16 | “order by”是怎么工作的?

假设你要查询城市是“杭州”的所有人名字,并且按照姓名排序返回前 1000 个人的姓名、年龄。
假设这个表的部分定义是这样的:

1
2
3
4
5
6
7
8
9
CREATE TABLE `t` (
`id` int(11) NOT NULL,
`city` varchar(16) NOT NULL,
`name` varchar(16) NOT NULL,
`age` int(11) NOT NULL,
`addr` varchar(128) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `city` (`city`)
) ENGINE=InnoDB;

这时,你的 SQL 语句可以这么写:

1
select city,name,age from t where city='杭州' order by name limit 1000  ;

全字段排序

为避免全表扫描,我们需要在 city 字段加上索引。
在 city 字段上创建索引之后,我们用 explain 命令来看看这个语句的执行情况。
image.png
Extra 这个字段中的“Using filesort”表示的就是需要排序,MySQL 会给每个线程分配一块内存用于排序,称为 sort_buffer。【sort buffer是在server层】
通常情况下,这个语句执行流程如下所示 :

  1. 初始化 sort_buffer,确定放入 name、city、age 这三个字段;【放入sort_buffer的字段是select字段确定的】
  2. 从索引 city 找到第一个满足 city=’杭州’条件的主键 id,也就是图中的 ID_X;
  3. 到主键 id 索引取出整行,取 name、city、age 三个字段的值,存入 sort_buffer 中;
  4. 从索引 city 取下一个记录的主键 id;
  5. 重复步骤 3、4 直到 city 的值不满足查询条件为止,对应的主键 id 也就是图中的 ID_Y;
  6. 对 sort_buffer 中的数据按照字段 name 做快速排序;
  7. 按照排序结果取前 1000 行返回给客户端。
    image.png
    图中“按 name 排序”这个动作,可能在内存中完成,也可能需要使用外部排序,这取决于排序所需的内存和参数 sort_buffer_size
    sort_buffer_size,就是 MySQL 为排序开辟的内存(sort_buffer)的大小。如果要排序的数据量小于 sort_buffer_size,排序就在内存中完成。但如果排序数据量太大,内存放不下,则不得不利用磁盘临时文件辅助排序
    你可以用下面介绍的方法,来确定一个排序语句是否使用了临时文件。
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    /* 打开 optimizer_trace,只对本线程有效 */
    SET optimizer_trace='enabled=on';

    /* @a 保存 Innodb_rows_read 的初始值 */
    select VARIABLE_VALUE into @a from performance_schema.session_status where variable_name = 'Innodb_rows_read';

    /* 执行语句 */
    select city, name,age from t where city='杭州' order by name limit 1000;

    /* 查看 OPTIMIZER_TRACE 输出 */
    SELECT * FROM `information_schema`.`OPTIMIZER_TRACE`\G

    /* @b 保存 Innodb_rows_read 的当前值 */
    select VARIABLE_VALUE into @b from performance_schema.session_status where variable_name = 'Innodb_rows_read';

    /* 计算 Innodb_rows_read 差值 */
    select @b-@a;
    这个方法是通过查看 OPTIMIZER_TRACE 的结果来确认的,你可以从 number_of_tmp_files 中看到是否使用了临时文件。
    image.png

    记得要分析的select 语句和 SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE; 要一起执行,在不同的结果集查看分析结果,否则会看不到想看的select语句分析结果。

number_of_tmp_files 表示的是,排序过程中使用的临时文件数。你一定奇怪,为什么需要 12 个文件?内存放不下时,就需要使用外部排序,外部排序一般使用归并排序算法。可以这么简单理解,MySQL 将需要排序的数据分成 12 份,每一份单独排序后存在这些临时文件中。然后把这 12 个有序文件再合并成一个有序的大文件。
如果 sort_buffer_size 超过了需要排序的数据量的大小,number_of_tmp_files 就是 0,表示排序可以直接在内存中完成。
否则就需要放在临时文件中排序。sort_buffer_size 越小,需要分成的份数越多,number_of_tmp_files 的值就越大。
接下来,我再和你解释一下图 4 中其他两个值的意思。

  • examined_rows:examined_rows=4000,表示参与排序的行数是 4000 行(表里有4000 条满足 city=’杭州’的记录)
  • sort_mode:里面的 packed_additional_fields 的意思是,排序过程对字符串做了“紧凑”处理。即使 name 字段的定义是 varchar(16),在排序过程中还是要按照实际长度来分配空间的。

    varchar存储数据,使用1或者2字节(数据长度超过255时使用2字节)保存数据长度,保存格式为:长度+数据。这里存放“yes”应该只要4个字节的空间。https://dev.mysql.com/doc/refman/8.0/en/char.html

最后一个查询语句 select @b-@a 的返回结果是 4000,表示整个执行过程只扫描了 4000 行

  • 这里需要注意的是,为了避免对结论造成干扰,我把 internal_tmp_disk_storage_engine 设置成 MyISAM。否则,select @b-@a 的结果会显示为 4001。
  • 这是因为查询 OPTIMIZER_TRACE 这个表时,需要用到临时表,而 internal_tmp_disk_storage_engine 的默认值是 InnoDB。如果使用的是 InnoDB 引擎的话,把数据从临时表取出来的时候,会让 Innodb_rows_read 的值加 1

rowid排序

如果查询要返回的字段很多的话,那么 sort_buffer 里面要放的字段数太多,这样内存里能够同时放下的行数很少,要分成很多个临时文件,排序的性能会很差。
所以如果单行很大,这个方法效率不够好。
如果 MySQL 认为排序的单行长度太大会怎么做呢?
接下来,我来修改一个参数,让 MySQL 采用另外一种算法

1
SET max_length_for_sort_data = 16;

max_length_for_sort_data:是 MySQL 中专门控制用于排序的行数据的长度的一个参数。它的意思是,如果单行的长度超过这个值,MySQL 就认为单行太大,要换一个算法
city、name、age 这三个字段的定义总长度是 36,我把 max_length_for_sort_data 设置为 16,我们再来看看计算过程有什么改变。
新的算法放入 sort_buffer 的字段,只有要排序的列(即 name 字段)和主键 id。
但这时,排序的结果就因为少了 city 和 age 字段的值,不能直接返回了,整个执行流程就变成如下所示的样子:

  1. 初始化 sort_buffer,确定放入两个字段,即 name 和 id;
  2. 从索引 city 找到第一个满足 city=’杭州’条件的主键 id,也就是图中的 ID_X;
  3. 到主键 id 索引取出整行,取 name、id 这两个字段,存入 sort_buffer 中;
  4. 从索引 city 取下一个记录的主键 id;
  5. 重复步骤 3、4 直到不满足 city=’杭州’条件为止,也就是图中的 ID_Y;
  6. 对 sort_buffer 中的数据按照字段 name 进行排序;
  7. 遍历排序结果,取前 1000 行,并按照 id 的值回到原表中取出 city、name 和 age 三个字段返回给客户端。
    image.png
    对比全字段排序流程图你会发现,rowid 排序多访问了一次表 t 的主键索引,就是步骤7
    需要说明的是,最后的“结果集”是一个逻辑概念,实际上 MySQL 服务端从排序后的 sort_buffer 中依次取出 id,然后到原表查到 city、name 和 age 这三个字段的结果,不需要在服务端再耗费内存存储结果,是直接返回给客户端的。

    [!note]
    rowid 方式和全字段方式一样,需要先把查询到的结果全部放在内存或硬盘中,再使用相关算法进行排序。而排序后由于没有保存所需的字段,需要按顺序使用主键再从索引树上查询,查到一个就返回一个,而不用把所有内容查完放到内存上再一并返回。

这个时候执行 select @b-@a,结果会是多少呢?现在,我们就来看看结果有什么不同。
image.png

  • 首先,图中的 examined_rows 的值还是 4000,表示用于排序的数据是 4000 行。但是 select @b-@a 这个语句的值变成 5000 了。
    • 因为这时候除了排序过程外,在排序完成后,还要根据 id 去原表取值。由于语句是 limit 1000,因此会多读 1000 行。
  • sort_mode 变成了 <sort_key, rowid>,表示参与排序的只有 name 和 id 这两个字段。
  • number_of_tmp_files 变成 10 了,是因为这时候参与排序的行数虽然仍然是 4000 行,但是每一行都变小了,因此需要排序的总数据量就变小了,需要的临时文件也相应地变少了。

全字段排序 VS rowid 排序

我们来分析一下,从这两个执行流程里,还能得出什么结论。
如果 MySQL 实在是担心排序内存太小,会影响排序效率,才会采用 rowid 排序算法,这样排序过程中一次可以排序更多行,但是需要再回到原表去取数据。
如果 MySQL 认为内存足够大,会优先选择全字段排序,把需要的字段都放到 sort_buffer 中,这样排序后就会直接从内存里面返回查询结果了,不用再回到原表去取数据。
这也就体现了 MySQL 的一个设计思想:如果内存够,就要多利用内存,尽量减少磁盘访问。
对于 InnoDB 表来说,rowid 排序会要求回表多造成磁盘读,因此不会被优先选择。
其实,并不是所有的 order by 语句,都需要排序操作的。从上面分析的执行过程,我们可以看到,MySQL 之所以需要生成临时表,并且在临时表上做排序操作,其原因是原来的数据都是无序的。

你可以设想下,如果能够保证从 city 这个索引上取出来的行,天然就是按照 name 递增排序的话,是不是就可以不用再排序了呢?
我们可以在这个市民表上创建一个 city 和 name 的联合索引

1
alter table t add index city_user(city, name);

作为与 city 索引的对比,我们来看看这个索引的示意图。
image.png
在这个索引里面,我们依然可以用树搜索的方式定位到第一个满足 city=’杭州’的记录,并且额外确保了,接下来按顺序取“下一条记录”的遍历过程中,只要 city 的值是杭州,name 的值就一定是有序的。
这样整个查询过程的流程就变成了:

  1. 从索引 (city,name) 找到第一个满足 city=’杭州’条件的主键 id;
  2. 到主键 id 索引取出整行,取 name、city、age 三个字段的值,作为结果集的一部分直接返回
  3. 从索引 (city,name) 取下一个记录主键 id;
  4. 重复步骤 2、3,直到查到第 1000 条记录,或者是不满足 city=’杭州’条件时循环结束。

可以看到,这个查询过程不需要临时表,也不需要排序。接下来,我们用 explain 的结果来印证一下。
image.png
从图中可以看到,Extra 字段中没有 Using filesort 了,也就是不需要排序了。而且由于 (city,name) 这个联合索引本身有序,所以这个查询也不用把 4000 行全都读一遍,只要找到满足条件的前 1000 条记录就可以退出了。也就是说,在我们这个例子里,只需要扫描 1000 次。
这里我们可以再稍微复习一下。覆盖索引是指,索引上的信息足够满足查询请求,不需要再回到主键索引上去取数据。
按照覆盖索引的概念,我们可以再优化一下这个查询语句的执行流程。
针对这个查询,我们可以创建一个 city、name 和 age 的联合索引,对应的 SQL 语句就是:

1
alter table t add index city_user_age(city, name, age);

这时,对于 city 字段的值相同的行来说,还是按照 name 字段的值递增排序的,此时的查询语句也就不再需要排序了。这样整个查询语句的执行流程就变成了:

  1. 从索引 (city,name,age) 找到第一个满足 city=’杭州’条件的记录,取出其中的 city、name 和 age 这三个字段的值,作为结果集的一部分直接返回;
  2. 从索引 (city,name,age) 取下一个记录,同样取出这三个字段的值,作为结果集的一部分直接返回;
  3. 重复执行步骤 2,直到查到第 1000 条记录,或者是不满足 city=’杭州’条件时循环结束。

image.png
然后,我们再来看看 explain 的结果。
image.png
可以看到,Extra 字段里面多了“Using index”,表示的就是使用了覆盖索引,性能上会快很多。
当然,这里并不是说要为了每个查询能用上覆盖索引,就要把语句中涉及的字段都建上联合索引,毕竟索引还是有维护代价的。这是一个需要权衡的决定。

索引并不是越多越好!索引可以提高效率同样可以降低效率。 索引可以增加查询效率,但同样也会降低插入和更新的效率,甚至有些情况下会降低查询效率。 因为 MySQL 优化器在选择如何优化查询时,会根据统一信息,对每一个可以用到的索引来进行评估,以生成出一个最好的执行计划,如果同时有很多个索引都可以用于查询,就会增加 MySQL 优化器生成执行计划的时间,同样会降低查询性能。 限制每张表上的索引数量,建议单张表索引不超过 5 个

问题

select * from t where city in (“杭州”,” 苏州 “) order by name limit 100; 这个 SQL 语句是否需要排序?有什么方案可以避免排序?
同时查了”杭州”和” 苏州 “两个城市,因此所有满足条件的 name 就不是递增的了。也就是说,这条 SQL 语句需要排序。
为了避免排序,这里,我们要用到 (city,name) 联合索引的特性,把这一条语句拆成两条语句,执行流程如下:

  1. 执行 select * from t where city=“杭州” order by name limit 100; 这个语句是不需要排序的,客户端用一个长度为 100 的内存数组 A 保存结果。
  2. 执行 select * from t where city=“苏州” order by name limit 100; 用相同的方法,假设结果被存进了内存数组 B。
  3. 现在 A 和 B 是两个有序数组,然后你可以用归并排序的思想,得到 name 最小的前 100 值,就是我们需要的结果了。

如果把这条 SQL 语句里“limit 100”改成“limit 10000,100”的话,处理方式其实也差不多,即:要把上面的两条语句改成写:

1
select * from t where city=" 杭州 " order by name limit 10100; 

1
select * from t where city=" 苏州 " order by name limit 10100

这时候数据量较大,可以同时起两个连接一行行读结果,用归并排序算法拿到这两个结果集里,按顺序取第 10001~10100 的 name 值,就是需要的结果了。
当然这个方案有一个明显的损失,就是从数据库返回给客户端的数据量变大了。
所以,如果数据的单行比较大的话,可以考虑把这两条 SQL 语句改成下面这种写法:

1
select id,name from t where city=" 杭州 " order by name limit 10100; 

1
select id,name from t where city="苏州" order by name limit 10100

然后,再用归并排序的方法取得按 name 顺序第 10001~10100 的 name、id 的值,然后拿着这 100 个 id 到数据库中去查出所有记录。
上面这些方法,需要你根据性能需求和开发的复杂度做出权衡。

其他问题

[!question]
老师,基于早上知道的sort_buffer是在server层,我重新理解了下rowid排序的过程,
1,执行器查看表定义,发现name、city、age字段的长度之和超过max_length_for_sort_data,所以初始化sort_buffer的时候只放入id和name字段。
2,执行器调用存储引擎的读数据接口,依次获取满足条件的数据的id和name,存入sort_buffer。
3,排序。
4,执行器根据limit条件筛选出id,再次调用引擎读数据的接口获取相应的数据,返回客户端。
整个过程实际上是被执行器拆成了两次查询,共调用两次存储层的读数据接口,所以总的扫描行数需要相加。(@b-@a=5000)
但是对于using index condition的场景,执行器只调用了一次查询接口,回表是由存储层来完成的,所以扫描行数只算一次,即只算走索引搜索的过程中扫描的行数。(@b-@a只会是4000)
不知道这么理解对不对?

不仅对,而且非常好!👍👍
把两个知识点连起来了。是的:

  1. rows_examined就是“server层调用引擎取一行的时候”加1
  2. 引擎内部自己调用,读取行,不加1;

再补充一个例子:
加索引的时候,也要扫描全表,但如果是inplace DDL(@第13篇),你会看到扫描行数是0,也是因为这些扫描动作都是引擎内部自己调用的。

关于使用varchar
1个字节8位,最大值是 255,用来记录 varchar 的长度。如果大于255,1个字节无法存储,因此需要2个字节(16位)

[!question]
关于查询时使用create_time排序是否会走索引

1)无条件查询如果只有order by create_time,即便create_time上有索引,也不会使用到。
因为优化器认为走二级索引再去回表成本比全表扫描排序更高。
所以选择走全表扫描,然后根据老师讲的两种方式选择一种来排序
2)无条件查询但是是 order by create_time limit m. 如果m值较小,是可以走索引的.
因为优化器认为根据索引有序性去回表查数据,然后得到m条数据,就可以终止循环,那么成本比全表扫描小,则选择走二级索引。
即便没有二级索引,mysql针对order by limit也做了优化,采用堆排序。

[!question]
问题一,在跟max_length_for_sort_data坐比较时,mysql是怎么判断一行数据的大小的?是直接根据表定义字段的大小吗?
问题二,另外这‘一行’的含义是整行数据,还是单单最终引擎层需要返回的字段(即select字段+where字段+order by字段)?

  1. 需要的字段的定义大小的和

  2. 好问题。首先取决于使用的算法。

    a) 如果是全字段排序就是select字段+where字段+order by字段,
    b) 如果是row_id排序,就是order by字段+row_id

[!abstract]
总结一下本节的内容

1.MySQL会为每个线程分配一个内存(sort_buffer)用于排序该内存大小为sort_buffer_size
1>如果排序的数据量小于sort_buffer_size,排序将会在内存中完成
2>如果排序数据量很大,内存中无法存下这么多数据,则会使用磁盘临时文件来辅助排序,也称外部排序
3>在使用外部排序时,MySQL会分成好几份单独的临时文件用来存放排序后的数据,然后在将这些文件合并成一个大文件
2.mysql会通过遍历索引将满足条件的数据读取到sort_buffer,并且按照排序字段进行快速排序
1>如果查询的字段不包含在辅助索引中,需要按照辅助索引记录的主键返回聚集索引取出所需字段
2>该方式会造成随机IO,在MySQL5.6提供了MRR的机制,会将辅助索引匹配记录的主键取出来在内存中进行排序,然后在回表
3>按照情况建立联合索引来避免排序所带来的性能损耗,允许的情况下也可以建立覆盖索引来避免回表
3.按照排序的结果返回客户所取行数

全字段排序
1.通过索引将所需的字段全部读取到sort_buffer中
2.按照排序字段进行排序
3.将结果集返回给客户端
缺点:
1.造成sort_buffer中存放不下很多数据,因为除了排序字段还存放其他字段,对sort_buffer的利用效率不高
2.当所需排序数据量很大时,会有很多的临时文件,排序性能也会很差
优点:MySQL认为内存足够大时会优先选择全字段排序,因为这种方式比rowid 排序避免了一次回表操作

rowid排序
1.通过控制排序的行数据的长度来让sort_buffer中尽可能多的存放数据,max_length_for_sort_data
2.只将需要排序的字段和主键读取到sort_buffer中,并按照排序字段进行排序
3.按照排序后的顺序,取id进行回表取出想要获取的数据
4.将结果集返回给客户端
优点:更好的利用内存的sort_buffer进行排序操作,尽量减少对磁盘的访问
缺点:回表的操作是随机IO,会造成大量的随机读,不一定就比全字段排序减少对磁盘的访问

17 | 如何正确地显示随机消息?

根据每个用户的级别有一个单词表,然后这个用户每次访问首页的时候,都会随机滚动显示三个单词。【这个需求有些类似与给用户推荐新闻,但是关键点有两个: 1、如何高效的保证随机性。 2、如何保证随机性的同时确保推荐的不会和之前推荐的重复。】
为了便于理解,我对这个例子进行了简化:去掉每个级别的用户都有一个对应的单词表这个逻辑,直接就是从一个单词表中随机选出三个单词。这个表的建表语句和初始数据的命令如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CREATE TABLE `words` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`word` varchar(64) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;

delimiter ;;
create procedure idata()
begin
declare i int;
set i=0;
while i<10000 do
insert into words(word) values(concat(char(97+(i div 1000)), char(97+(i % 1000 div 100)), char(97+(i % 100 div 10)), char(97+(i % 10))));
set i=i+1;
end while;
end;;
delimiter ;

call idata();

内存临时表

首先,你会想到用 order by rand() 来实现这个逻辑。

1
mysql> select word from words order by rand() limit 3;

我们先用 explain 命令来看看这个语句的执行情况。
image.png
Extra 字段显示 Using temporary,表示的是需要使用临时表;Using filesort,表示的是需要执行排序操作。
因此这个 Extra 的意思就是,需要临时表,并且需要在临时表上排序。

小总结
什么情况下需要使用到临时表呢? 临时表有内存和硬盘之分, tmp_table_size 这个配置限制了内存临时表的大小,默认值是 16M。如果临时表大小超过了 tmp_table_size,那么内存临时表就会转成磁盘临时表。 磁盘临时表使用的引擎默认是 InnoDB,是由参数 internal_tmp_disk_storage_engine 控制的。

你觉得对于临时内存表的排序来说,它会选择哪一种算法呢?回顾一下上一篇文章的一个结论:对于 InnoDB 表来说,执行全字段排序会减少磁盘访问,因此会被优先选择。
我强调了“InnoDB 表”,你肯定想到了,对于内存表,回表过程只是简单地根据数据行的位置,直接访问内存得到数据,根本不会导致多访问磁盘。优化器没有了这一层顾虑,那么它会优先考虑的,就是用于排序的行越小越好了,所以,MySQL 这时就会选择 rowid 排序。【临时表在内存中,因此回表过程不会访问磁盘】

关于临时表,自己搜了一些资料,如下:
资料:当查询语句无法直接利用现有的索引进行优化时,会使用到临时表。这些文件通常存储在临时文件夹中,文件名以 #sql 开头,后面跟着一个随机字符串。这些临时缓存文件在查询结束后会被删除。
MySQL 的排序操作可以分为两种:使用索引排序和不使用索引排序。
使用索引排序时,MySQL 会利用索引中已经按照排序顺序排好的数据直接返回给客户端,而不需要使用临时表进行排序。
不使用索引排序时,MySQL 会使用 filesort 算法进行排序。在使用 filesort 算法进行排序时,MySQL 会创建一个临时表,并将需要排序的数据全部存储到该临时表中,然后对该临时表中的数据进行排序,最后返回排序结果给客户端。(主要是一些复杂排序使用临时表)

理解了这个算法选择的逻辑,我们再来看看语句的执行流程。同时,通过今天的这个例子,我们来尝试分析一下语句的扫描行数。
这条语句的执行流程是这样的:

  1. 创建一个临时表。这个临时表使用的是 memory 引擎,表里有两个字段,第一个字段是 double 类型,为了后面描述方便,记为字段 R,第二个字段是 varchar(64) 类型,记为字段 W。并且,这个表没有建索引。
  2. 从 words 表中,按主键顺序取出所有的 word 值。对于每一个 word 值,调用 rand() 函数生成一个大于 0 小于 1 的随机小数,并把这个随机小数和 word 分别存入临时表的 R 和 W 字段中,到此,扫描行数是 10000。
  3. 现在临时表有 10000 行数据了,接下来你要在这个没有索引的内存临时表上,按照字段 R 排序。
  4. 初始化 sort_buffer。sort_buffer 中有两个字段,一个是 double 类型,另一个是整型。
  5. 从内存临时表中一行一行地取出 R 值和位置信息(我后面会和你解释这里为什么是“位置信息”),分别存入 sort_buffer 中的两个字段里。这个过程要对内存临时表做全表扫描,此时扫描行数增加 10000,变成了 20000。
  6. 在 sort_buffer 中根据 R 的值进行排序。注意,这个过程没有涉及到表操作,所以不会增加扫描行数。
  7. 排序完成后,取出前三个结果的位置信息,依次到内存临时表中取出 word 值,返回给客户端。这个过程中,访问了表的三行数据,总扫描行数变成了 20003。

接下来,我们通过慢查询日志(slow log)来验证一下我们分析得到的扫描行数是否正确。

1
# Query_time: 0.900376  Lock_time: 0.000347 Rows_sent: 3 Rows_examined: 20003SET timestamp=1541402277;select word from words order by rand() limit 3;

其中,Rows_examined:20003 就表示这个语句执行过程中扫描了 20003 行,也就验证了我们分析得出的结论。
这里插一句题外话,在平时学习概念的过程中,你可以经常这样做,先通过原理分析算出扫描行数,然后再通过查看慢查询日志,来验证自己的结论。我自己就是经常这么做,这个过程很有趣,分析对了开心,分析错了但是弄清楚了也很开心。
现在,我来把完整的排序执行流程图画出来。
image.png
图中的 pos 就是位置信息,你可能会觉得奇怪,这里的“位置信息”是个什么概念?在上一篇文章中,我们对 InnoDB 表排序的时候,明明用的还是 ID 字段。
这时候,我们就要回到一个基本概念:MySQL 的表是用什么方法来定位“一行数据”的
有几位同学问到,如果把一个 InnoDB 表的主键删掉,是不是就没有主键,就没办法回表了?
其实不是的。如果你创建的表没有主键,或者把一个表的主键删掉了,那么 InnoDB 会自己生成一个长度为 6 字节的 rowid 来作为主键。
这也就是排序模式里面,rowid 名字的来历。实际上它表示的是:每个引擎用来唯一标识数据行的信息。

  • 对于有主键的 InnoDB 表来说,这个 rowid 就是主键 ID
  • 对于没有主键的 InnoDB 表来说,这个 rowid 就是由系统生成的;
  • MEMORY 引擎不是索引组织表。在这个例子里面,你可以认为它就是一个数组。因此,这个 rowid 其实就是数组的下标

到这里,我来稍微小结一下:order by rand() 使用了内存临时表,内存临时表排序的时候使用了 rowid 排序方法。

磁盘临时表

并不是所有的临时表都是内存表!
tmp_table_size 这个配置限制了内存临时表的大小,默认值是 16M。如果临时表大小超过了 tmp_table_size,那么内存临时表就会转成磁盘临时表。
磁盘临时表使用的引擎默认是 InnoDB,是由参数 internal_tmp_disk_storage_engine 控制的。
当使用磁盘临时表的时候,对应的就是一个没有显式索引的 InnoDB 表的排序过程
为了复现这个过程,我把 tmp_table_size 设置成 1024,把 sort_buffer_size 设置成 32768, 把 max_length_for_sort_data 设置成 16。

  1. tmp_table_size 设置成 1K,设置内存临时表的大小为1K;
  2. sort_buffer_size 设置成32K,排序开辟的内存大小设置成32K;
  3. max_length_for_sort_data :用于排序的行数据的长度,如果单行的长度超过这个值,MySQL 就认为单行太大,要换一个算法。 将 max_length_for_sort_data 设置成 16,小于 word 字段的长度定义,因此使用rowid 排序
1
2
3
4
5
6
7
8
9
10
11
set tmp_table_size=1024;
set sort_buffer_size=32768;
set max_length_for_sort_data=16;
/* 打开 optimizer_trace,只对本线程有效 */
SET optimizer_trace='enabled=on';

/* 执行语句 */
select word from words order by rand() limit 3;

/* 查看 OPTIMIZER_TRACE 输出 */
SELECT * FROM `information_schema`.`OPTIMIZER_TRACE`\G

image.png
然后,我们来看一下这次 OPTIMIZER_TRACE 的结果。

OPTIMIZER_TRACE是MySQL 5.6引入的一项跟踪功能,它可以跟踪优化器做出的各种决策(比如访问表的方法、各种开销计算、各种转换等),并将跟踪结果记录INFORMATION_SCHEMA.OPTIMIZER_TRACE 表中。

因为将 max_length_for_sort_data 设置成 16,小于 word 字段的长度定义,所以我们看到 sort_mode 里面显示的是 rowid 排序,这个是符合预期的,参与排序的是随机值 R 字段和 rowid 字段组成的行。
这时候你可能心算了一下,发现不对。R 字段存放的随机值就 8 个字节,rowid 是 6 个字节(至于为什么是 6 字节,就留给你课后思考吧),数据总行数是 10000,这样算出来就有 140000 字节,超过了 sort_buffer_size 定义的 32768 字节了。但是,number_of_tmp_files 的值居然是 0,难道不需要用临时文件吗?
这个 SQL 语句的排序确实没有用到临时文件,采用是 MySQL 5.6 版本引入的一个新的排序算法,即:优先队列排序算法。接下来,我们就看看为什么没有使用临时文件的算法,也就是归并排序算法,而是采用了优先队列排序算法。
如果使用归并排序算法的话,虽然最终也能得到前 3 个值,但是这个算法结束后,已经将 10000 行数据都排好序了。但我们的查询不需要全部有序,浪费资源。而优先队列算法,就可以精确地只得到三个最小值,执行流程如下:

  1. 对于这 10000 个准备排序的 (R,rowid),先取前三行,构造成一个堆;

(对数据结构印象模糊的同学,可以先设想成这是一个由三个元素组成的数组)
2. 取下一个行 (R’,rowid’),跟当前堆里面最大的 R 比较,如果 R’小于 R,把这个 (R,rowid) 从堆中去掉,换成 (R’,rowid’);
3. 重复第 2 步,直到第 10000 个 (R’,rowid’) 完成比较。

image.png
上图是模拟 6 个 (R,rowid) 行,通过优先队列排序找到最小的三个 R 值的行的过程。整个排序过程中,为了最快地拿到当前堆的最大值,总是保持最大值在堆顶,因此这是一个最大堆。
图中的OPTIMIZER_TRACE 结果中,filesort_priority_queue_optimization 这个部分的 chosen=true,就表示使用了优先队列排序算法,这个过程不需要临时文件,因此对应的 number_of_tmp_files 是 0
这个流程结束后,我们构造的堆里面,就是这个 10000 行里面 R 值最小的三行。然后,依次把它们的 rowid 取出来,去临时表里面拿到 word 字段,这个过程就跟上一篇文章的 rowid 排序的过程一样了。

我们再看一下上面一篇文章的 SQL 查询语句:

1
select city,name,age from t where city='杭州' order by name limit 1000  ;

你可能会问,这里也用到了 limit,为什么没用优先队列排序算法呢?原因是,这条 SQL 语句是 limit 1000,如果使用优先队列算法的话,需要维护的堆的大小就是 1000 行的 (name,rowid),超过了我设置的 sort_buffer_size 大小,所以只能使用归并排序算法。

影响是否使用优先队列排序(堆排序的)算法的原因是,sort buffer排序内存的大小,因为这个堆就是占用的sort buffer(排序内存)的。【小于buffer_size就直接快排了】

总之,不论是使用哪种类型的临时表,order by rand() 这种写法都会让计算过程非常复杂,需要大量的扫描行数,因此排序过程的资源消耗也会很大。

随机排序算法

我们先把问题简化一下,如果只随机选择 1 个 word 值,可以怎么做呢?思路上是这样的:

  1. 取得这个表的主键 id 的最大值 M 和最小值 N;
  2. 用随机函数生成一个最大值到最小值之间的数 X = (M-N)*rand() + N;
  3. 取不小于 X 的第一个 ID 的行。

我们把这个算法,暂时称作随机算法 1。这里,我直接给你贴一下执行语句的序列:

1
mysql> select max(id),min(id) into @M,@N from t ;set @X= floor((@M-@N+1)*rand() + @N);select * from t where id >= @X limit 1;

这个方法效率很高,因为取 max(id) 和 min(id) 都是不需要扫描索引的,而第三步的 select 也可以用索引快速定位,可以认为就只扫描了 3 行。但实际上,这个算法本身并不严格满足题目的随机要求,因为 ID 中间可能有空洞,因此选择不同行的概率不一样,不是真正的随机
比如你有 4 个 id,分别是 1、2、4、5,如果按照上面的方法,那么取到 id=4 的这一行的概率是取得其他行概率的两倍。
如果这四行的 id 分别是 1、2、40000、40001 呢?这个算法基本就能当 bug 来看待了。

为了得到严格随机的结果,你可以用下面这个流程:

  1. 取得整个表的行数,并记为 C。
  2. 取得 Y = floor(C * rand())。 floor 函数在这里的作用,就是取整数部分。
  3. 再用 limit Y,1 取得一行。

我们把这个算法,称为随机算法 2。下面这段代码,就是上面流程的执行语句的序列。

1
2
3
4
5
6
mysql> select count(*) into @C from t;
set @Y = floor(@C * rand());
set @sql = concat("select * from t limit ", @Y, ",1");
prepare stmt from @sql;
execute stmt;
DEALLOCATE prepare stmt;

由于 limit 后面的参数不能直接跟变量,所以我在上面的代码中使用了 prepare+execute 的方法。你也可以把拼接 SQL 语句的方法写在应用程序中,会更简单些。
这个随机算法 2,解决了算法 1 里面明显的概率不均匀问题
MySQL 处理 limit Y,1 的做法就是按顺序一个一个地读出来,丢掉前 Y 个,然后把下一个记录作为返回结果,因此这一步需要扫描 Y+1 行。再加上,第一步扫描的 C 行,总共需要扫描 C+Y+1 行,执行代价比随机算法 1 的代价要高。
当然,随机算法 2 跟直接 order by rand() 比起来,执行代价还是小很多的。

现在,我们再看看,如果我们按照随机算法 2 的思路,要随机取 3 个 word 值呢?你可以这么做:取得整个表的行数,记为 C;根据相同的随机方法得到 Y1、Y2、Y3;再执行三个 limit Y, 1 语句得到三行数据。我们把这个算法,称作随机算法 3。下面这段代码,就是上面流程的执行语句的序列。【注意这里是有小概率碰撞的,所以考虑业务是否要进行去重】

1
2
3
4
5
6
7
mysql> select count(*) into @C from t;
set @Y1 = floor(@C * rand());
set @Y2 = floor(@C * rand());
set @Y3 = floor(@C * rand());
select * from t limit @Y11//在应用代码里面取Y1、Y2、Y3值,拼出SQL后执行
select * from t limit @Y21
select * from t limit @Y31

今天的例子里面,我们不是仅仅在数据库内部解决问题,还会让应用代码配合拼接 SQL 语句。在实际应用的过程中,比较规范的用法就是:尽量将业务逻辑写在业务代码中,让数据库只做“读写数据”的事情。因此,这类方法的应用还是比较广泛的。

课后问题

问题:通过三次 limit Y,1 来得到需要的数据,你觉得有没有进一步的优化方法?
回答:
这里我给出一种方法,取 Y1、Y2 和 Y3 里面最大的一个数,记为 M,最小的一个数记为 N,然后执行下面这条 SQL 语句:

1
mysql> select * from t limit N, M-N+1;

再加上取整个表总行数的 C 行,这个方案的扫描行数总共只需要 C+M+1 行。
当然也可以先取回 id 值,在应用中确定了三个 id 值以后,再执行三次 where id=X 的语句也是可以的。

对于有空洞,可以在上线前整理数据,把空洞处理掉
可以增加一个主键字段,用来记录每行记录的rowid,这样一万行,那就是连续的一万,然后随机,用该随机rowid回表查询该行记录【本质都是增加无空洞的子增值】

[!note]
该问题还有一种优化方法:【是一个“如何优化大表分页查询”的答法之一
假设Y1,Y2,Y3是由小到大的三个数,则可以优化成这样,这样扫描行数为Y3
id1 = select * from t limit @Y1,1;
id2= select * from t where id > id1 limit @Y2-@Y1,1;
select * from t where id > id2 limit @Y3 - @Y2,1;

18 | 为什么这些SQL语句逻辑相同,性能却差异巨大?

案例一:条件字段函数操作

假设你现在维护了一个交易系统,其中交易记录表 tradelog 包含交易流水号(tradeid)、交易员 id(operator)、交易时间(t_modified)等字段。为了便于描述,我们先忽略其他字段。这个表的建表语句如下:

1
2
3
4
5
6
7
8
9
mysql> CREATE TABLE `tradelog` (
`id` int(11) NOT NULL,
`tradeid` varchar(32) DEFAULT NULL,
`operator` int(11) DEFAULT NULL,
`t_modified` datetime DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `tradeid` (`tradeid`),
KEY `t_modified` (`t_modified`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

假设,现在已经记录了从 2016 年初到 2018 年底的所有数据,运营部门有一个需求是,要统计发生在所有年份中 7 月份的交易记录总数。这个逻辑看上去并不复杂,你的 SQL 语句可能会这么写:

1
mysql> select count(*) from tradelog where month(t_modified)=7;

虽然t_modified 字段上有索引,但会执行特别久
对索引字段做函数操作,可能会破坏索引值的有序性,因此优化器就决定放弃走树搜索功能。

需要注意的是,优化器并不是要放弃使用这个索引。
在这个例子里,放弃了树搜索功能,优化器可以选择遍历主键索引,也可以选择遍历索引 t_modified,优化器对比索引大小后发现,索引 t_modified 更小,遍历这个索引比遍历主键索引来得更快。因此最终还是会选择索引 t_modified。
接下来,我们使用 explain 命令,查看一下这条 SQL 语句的执行结果。
image.png
key=”t_modified”表示的是,使用了 t_modified 这个索引;我在测试表数据中插入了 10 万行数据,rows=100335,说明这条语句扫描了整个索引的所有值;Extra 字段的 Using index,表示的是使用了覆盖索引

为了能够用上索引的快速定位能力,我们就要把 SQL 语句改成基于字段本身的范围查询。按照下面这个写法,优化器就能按照我们预期的,用上 t_modified 索引的快速定位能力了。

where 后面有or不是会导致索引部分失效吗?不会,只要是同个字段就不会失效

1
2
3
4
mysql> select count(*) from tradelog where
-> (t_modified >= '2016-7-1' and t_modified<'2016-8-1') or
-> (t_modified >= '2017-7-1' and t_modified<'2017-8-1') or
-> (t_modified >= '2018-7-1' and t_modified<'2018-8-1');

当然,如果你的系统上线时间更早,或者后面又插入了之后年份的数据的话,你就需要再把其他年份补齐。

不过优化器在个问题上确实有“偷懒”行为,即使是对于不改变有序性的函数,也不会考虑使用索引。比如,对于 select * from tradelog where id + 1 = 10000 这个 SQL 语句,这个加 1 操作并不会改变有序性,但是 MySQL 优化器还是不能用 id 索引快速定位到 9999 这一行。所以,需要你在写 SQL 语句的时候,手动改写成 where id = 10000 -1 才可以。

案例二:隐式类型转换

1
mysql> select * from tradelog where tradeid=110717;

交易编号 tradeid 这个字段上,本来就有索引,但是 explain 的结果却显示,这条语句需要走全表扫描。你可能也发现了,tradeid 的字段类型是 varchar(32),而输入的参数却是整型,所以需要做类型转换。
那么,现在这里就有两个问题:
1、 数据类型转换的规则是什么?
2、 为什么有数据类型转换,就需要走全索引扫描?
这里有一个简单的方法,看 select “10” > 9 的结果:

  • 如果规则是“将字符串转成数字”,那么就是做数字比较,结果应该是 1;
  • 如果规则是“将数字转成字符串”,那么就是做字符串比较,结果应该是 0。

在 MySQL 中,字符串和数字做比较的话,是将字符串转换成数字
对于优化器来说,上面的这个语句相当于:

1
mysql> select * from tradelog where  CAST(tradid AS signed int) = 110717;

案例三:隐式字符编码转换

假设系统里还有另外一个表 trade_detail,用于记录交易的操作细节。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
mysql> CREATE TABLE `trade_detail` (
`id` int(11) NOT NULL,
`tradeid` varchar(32) DEFAULT NULL,
`trade_step` int(11) DEFAULT NULL, /*操作步骤*/
`step_info` varchar(32) DEFAULT NULL, /*步骤信息*/
PRIMARY KEY (`id`),
KEY `tradeid` (`tradeid`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

insert into tradelog values(1, 'aaaaaaaa', 1000, now());
insert into tradelog values(2, 'aaaaaaab', 1000, now());
insert into tradelog values(3, 'aaaaaaac', 1000, now());

insert into trade_detail values(1, 'aaaaaaaa', 1, 'add');
insert into trade_detail values(2, 'aaaaaaaa', 2, 'update');
insert into trade_detail values(3, 'aaaaaaaa', 3, 'commit');
insert into trade_detail values(4, 'aaaaaaab', 1, 'add');
insert into trade_detail values(5, 'aaaaaaab', 2, 'update');
insert into trade_detail values(6, 'aaaaaaab', 3, 'update again');
insert into trade_detail values(7, 'aaaaaaab', 4, 'commit');
insert into trade_detail values(8, 'aaaaaaac', 1, 'add');
insert into trade_detail values(9, 'aaaaaaac', 2, 'update');
insert into trade_detail values(10, 'aaaaaaac', 3, 'update again');
insert into trade_detail values(11, 'aaaaaaac', 4, 'commit');

这时候,如果要查询 id=2 的交易的所有操作步骤信息,SQL 语句可以这么写:

1
mysql> select d.* from tradelog l, trade_detail d where d.tradeid=l.tradeid and l.id=2; /* 语句 Q1*/

image.png
我们一起来看下这个结果:

  1. 第一行显示优化器会先在交易记录表 tradelog 上查到 id=2 的行,这个步骤用上了主键索引,rows=1 表示只扫描一行;
  2. 第二行 key=NULL,表示没有用上交易详情表 trade_detail 上的 tradeid 索引,进行了全表扫描。

在这个执行计划里,是从 tradelog 表中取 tradeid 字段,再去 trade_detail 表里查询匹配字段。因此,我们把 tradelog 称为驱动表,把 trade_detail 称为被驱动表,把 tradeid 称为关联字段
接下来,我们看下这个 explain 结果表示的执行流程:
image.png

  • 第 1 步,是根据 id 在 tradelog 表里找到 L2 这一行;
  • 第 2 步,是从 L2 中取出 tradeid 字段的值;
  • 第 3 步,是根据 tradeid 值到 trade_detail 表中查找条件匹配的行。explain 的结果里面第二行的 key=NULL 表示的就是,这个过程是通过遍历主键索引的方式,一个一个地判断 tradeid 的值是否匹配。

进行到这里,你会发现第 3 步不符合我们的预期。因为表 trade_detail 里 tradeid 字段上是有索引的,我们本来是希望通过使用 tradeid 索引能够快速定位到等值的行。但,这里并没有。
因为这两个表的字符集不同,一个是 utf8,一个是 utf8mb4,所以做表连接查询的时候用不上关联字段的索引。但为什么字符集不同就用不上索引呢?
字符集 utf8mb4 是 utf8 的超集,所以当这两个类型的字符串在做比较的时候,MySQL 内部的操作是,先把 utf8 字符串转成 utf8mb4 字符集,再做比较

这个设定很好理解,utf8mb4 是 utf8 的超集。类似地,在程序设计语言里面,做自动类型转换的时候,为了避免数据在转换过程中由于截断导致数据错误,也都是“按数据长度增加的方向”进行转换的。

因此, 在执行上面这个语句的时候,需要将被驱动数据表里的字段一个个地转换成 utf8mb4,再跟 L2 做比较。
也就是说,实际上这个语句等同于下面这个写法:

1
select * from trade_detail  where CONVERT(traideid USING utf8mb4)=$L2.tradeid.value; 

CONVERT() 函数,在这里的意思是把输入的字符串转成 utf8mb4 字符集。
这就再次触发了我们上面说到的原则:对索引字段做函数操作,优化器会放弃走树搜索功能
到这里,你终于明确了,字符集不同只是条件之一,连接过程中要求在被驱动表的索引字段上加函数操作,是直接导致对被驱动表做全表扫描的原因。
作为对比验证,我给你提另外一个需求,“查找 trade_detail 表里 id=4 的操作,对应的操作者是谁”,再来看下这个语句和它的执行计划。

1
mysql>select l.operator from tradelog l , trade_detail d where d.tradeid=l.tradeid and d.id=4;

image.png
这个语句里 trade_detail 表成了驱动表,但是 explain 结果的第二行显示,这次的查询操作用上了被驱动表 tradelog 里的索引 (tradeid),扫描行数是 1。

这也是两个 tradeid 字段的 join 操作,为什么这次能用上被驱动表的 tradeid 索引呢?我们来分析一下。
假设驱动表 trade_detail 里 id=4 的行记为 R4,那么在连接的时候(图 5 的第 3 步),被驱动表 tradelog 上执行的就是类似这样的 SQL 语句:

1
select operator from tradelog  where traideid =$R4.tradeid.value; 

这时候 $R4.tradeid.value 的字符集是 utf8, 按照字符集转换规则,要转成 utf8mb4,所以这个过程就被改写成:

1
select operator from tradelog  where traideid =CONVERT($R4.tradeid.value USING utf8mb4); 

你看,这里的 CONVERT 函数是加在输入参数上的,这样就可以用上被驱动表的 traideid 索引。
理解了原理以后,就可以用来指导操作了。如果要优化语句

1
select d.* from tradelog l, trade_detail d where d.tradeid=l.tradeid and l.id=2;

的执行过程,有两种做法:

  • 比较常见的优化方法是,把 trade_detail 表上的 tradeid 字段的字符集也改成 utf8mb4,这样就没有字符集转换的问题了。
1
alter table trade_detail modify tradeid varchar(32) CHARACTER SET utf8mb4 default null;
  • 如果能够修改字段的字符集的话,是最好不过了。但如果数据量比较大, 或者业务上暂时不能做这个 DDL 的话,那就只能采用修改 SQL 语句的方法了。
1
mysql> select d.* from tradelog l , trade_detail d where d.tradeid=CONVERT(l.tradeid USING utf8) and l.id=2; 

image.png
这里,我主动把 l.tradeid 转成 utf8,就避免了被驱动表上的字符编码转换,从 explain 结果可以看到,这次索引走对了【当然文中不存在丢失精度的问题,毕竟utf8mb4转换成utf8是要考虑出现异常的情况】

问题

希望你可以分享一下之前碰到过的、与文章中类似的场景。@封建的风 提到一个有趣的场景,值得一说。我把他的问题重写一下,表结构如下:

1
2
3
4
5
6
mysql> CREATE TABLE `table_a` (
`id` int(11) NOT NULL,
`b` varchar(10) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `b` (`b`)
) ENGINE=InnoDB;

假设现在表里面,有 100 万行数据,其中有 10 万行数据的 b 的值是’1234567890’, 假设现在执行语句是这么写的:

1
mysql> select * from table_a where b='1234567890abcd';

这时候,MySQL 会怎么执行呢?
最理想的情况是,MySQL 看到字段 b 定义的是 varchar(10),那肯定返回空呀。可惜,MySQL 并没有这么做。那要不,就是把’1234567890abcd’拿到索引里面去做匹配,肯定也没能够快速判断出索引树 b 上并没有这个值,也很快就能返回空结果。
但实际上,MySQL 也不是这么做的。这条 SQL 语句的执行很慢,流程是这样的

  1. 在传给引擎执行的时候,做了字符截断。因为引擎里面这个行只定义了长度是 10,所以只截了前 10 个字节,就是’1234567890’进去做匹配;
  2. 这样满足条件的数据有 10 万行;
  3. 因为是 select *, 所以要做 10 万次回表;【这里完善下,老师应该是为了说明例子,正常业务不只2个字段,不然应该走覆盖索引不会回表的】
  4. 但是每次回表以后查出整行,到 server 层一判断,b 的值都不是’1234567890abcd’;
  5. 返回结果是空。

这个例子,是我们文章内容的一个很好的补充。虽然执行过程中可能经过函数操作,但是最终在拿到结果后,server 层还是要做一轮判断的。

其他问题

[!question]
老师你好,我在执行explain的时候,发现extra 里面 有using where,using index ,using index condition 能具体讲下这几个的区别吗?

Using index是覆盖索引
Using index condition 是索引下推
using where 说明执行器还会进行过滤;
一般where语句会被拆解成 index key,index filter,table filter
index key:树搜索
index filter: icp
table filter: 执行器过滤

[!question]
sql语句执行时那些order by group by limit 以及where条件,有执行的先后顺序吗?

一般而言,SQL 查询的执行顺序如下:

  1. FROM:首先,执行 FROM 子句,确定要查询的数据源表。这包括表的连接和关联操作。
  2. WHERE:接下来,应用 WHERE 子句中的条件,对数据进行过滤。只有符合条件的行才会进入下一步处理。
  3. GROUP BY:如果查询包含 GROUP BY 子句,那么在聚合操作之前,会将结果集按照 GROUP BY 子句中指定的列进行分组。
  4. HAVING:在 GROUP BY 分组之后,应用 HAVING 子句中的条件进行过滤。只有满足条件的分组才会保留下来。
  5. SELECT:在上述步骤完成后,执行 SELECT 子句,选择要返回的列。
  6. ORDER BY:最后,应用 ORDER BY 子句中的排序规则对结果进行排序。
  7. LIMIT:如果查询包含 LIMIT 子句,那么在所有操作完成之后,应用 LIMIT 子句并返回指定数量的结果行。

[!question]
一个有趣的问题【不满足最左前缀匹配原则时也走了索引

这个查询语句会对t3做全索引扫描,是使用了索引的,只是没有用上快速搜索功能——>个人理解是使用了覆盖索引,但由于没使用status,所以走全索引扫描即没用快速搜索功能
(优化器可以使用该索引来定位满足 t3.ootime < UNIX_TIMESTAMP('2022-01-18') 条件的行。这种情况下,MySQL 会扫描索引,并且只需要访问索引的数据页,而不需要回表访问表的数据行。)
image.png

19 | 为什么我只查一行的语句,也执行这么慢?

需要说明的是,如果 MySQL 数据库本身就有很大的压力,导致数据库服务器 CPU 占用率很高或 ioutil(IO 利用率)很高,这种情况下所有语句的执行都有可能变慢,不属于我们今天的讨论范围。

为了便于描述,我还是构造一个表,基于这个表来说明今天的问题。这个表有两个字段 id 和 c,并且我在里面插入了 10 万行记录。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
mysql> CREATE TABLE `t` (
`id` int(11) NOT NULL,
`c` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;

delimiter ;;
create procedure idata()
begin
declare i int;
set i=1;
while(i<=100000)do
insert into t values(i,i);
set i=i+1;
end while;
end;;
delimiter ;

call idata();

第一类:查询长时间不返回

如图 1 所示,在表 t 执行下面的 SQL 语句:

1
mysql> select * from t where id=1;

查询结果长时间不返回。
一般碰到这种情况的话,大概率是表 t 被锁住了。接下来分析原因的时候,一般都是首先执行一下 show processlist 命令,看看当前语句处于什么状态。
然后我们再针对每种状态,去分析它们产生的原因、如何复现,以及如何处理。

等 MDL 锁

如图所示,就是使用 show processlist 命令查看 Waiting for table metadata lock 的示意图。
image.png
出现这个状态表示的是,现在有一个线程正在表 t 上请求或者持有 MDL 写锁,把 select 语句堵住了。
[[基础篇 1-8节#06 全局锁和表锁 :给表加个字段怎么有这么多阻碍?]]我给你介绍过一种复现方法。但需要说明的是,那个复现过程是基于 MySQL 5.6 版本的。MySQL 5.7 版本修改了 MDL 的加锁策略,所以就不能复现这个场景了。
不过,在 MySQL 5.7 版本下复现这个场景,也很容易。如图 3 所示,我给出了简单的复现步骤。
image.png
session A 通过 lock table 命令持有表 t 的 MDL 写锁,而 session B 的查询需要获取 MDL 读锁。所以,session B 进入等待状态。
这类问题的处理方式,就是找到谁持有 MDL 写锁,然后把它 kill 掉。【MDL 锁等待时间过长的解决方案】

但是,由于在 show processlist 的结果里面,session A 的 Command 列是“Sleep”,导致查找起来很不方便。不过有了 performance_schema 和 sys 系统库以后,就方便多了。(MySQL 启动时需要设置 performance_schema=on,相比于设置为 off 会有 10% 左右的性能损失)
通过查询 sys.schema_table_lock_waits 这张表,我们就可以直接找出造成阻塞的 process id,把这个连接用 kill 命令断开即可。
image.png

等 flush

我在表 t 上,执行下面的 SQL 语句:

1
mysql> select * from information_schema.processlist where id=1;

如图,我查出来这个线程的状态是 Waiting for table flush,你可以设想一下这是什么原因。
image.png
这个状态表示的是,现在有一个线程正要对表 t 做 flush 操作。MySQL 里面对表做 flush 操作的用法,一般有以下两个:

1
2
flush tables t with read lock; 
flush tables with read lock;

这两个 flush 语句,如果指定表 t 的话,代表的是只关闭表 t;如果没有指定具体的表名,则表示关闭 MySQL 里所有打开的表。
但是正常这两个语句执行起来都很快,除非它们也被别的线程堵住了。
所以,出现 Waiting for table flush 状态的可能情况是:有一个 flush tables 命令被别的语句堵住了,然后它又堵住了我们的 select 语句
现在,我们一起来复现一下这种情况,复现步骤如下图所示:
image.png
在 session A 中,我故意每行都调用一次 sleep(1),这样这个语句默认要执行 10 万秒,在这期间表 t 一直是被 session A“打开”着。然后,session B 的 flush tables t 命令再要去关闭表 t,就需要等 session A 的查询结束。这样,session C 要再次查询的话,就会被 flush 命令堵住了。
图 7 是这个复现步骤的 show processlist 结果。这个例子的排查也很简单,你看到这个 show processlist 的结果,肯定就知道应该怎么做了。

尝试回答下解法:
先将slect sleep(1) from t 的进程先结束,【show processlist 的结果里就有id了,前面等MDL锁的时候不能直接用这个ID是因为看不到具体的执行命令(info),这里能看到应该就可以直接定位到了。】
然后然flush table t的命令执行完,
select * from t where id=1 的命令就能执行了

image.png

等行锁

现在,经过了表级锁的考验,我们的 select 语句终于来到引擎里了。

1
mysql> select * from t where id=1 lock in share mode; 

备注:该语句在[[基础篇 1-8节#08 事务到底是隔离的还是不隔离的?]]介绍过
由于访问 id=1 这个记录时要加读锁,如果这时候已经有一个事务在这行记录上持有一个写锁,我们的 select 语句就会被堵住。
复现步骤和现场如下:
image.png
image.png
显然,session A 启动了事务,占有写锁,还不提交,是导致 session B 被堵住的原因。
这个问题并不难分析,但问题是怎么查出是谁占着这个写锁。如果你用的是 MySQL 5.7 版本,可以通过 sys.innodb_lock_waits 表查到。
查询方法是:

1
mysql> select * from t sys.innodb_lock_waits where locked_table=`'test'.'t'`\G

image.png
可以看到,这个信息很全,4 号线程是造成堵塞的罪魁祸首。而干掉这个罪魁祸首的方式,就是 KILL QUERY 4 或 KILL 4。
不过,这里不应该显示“KILL QUERY 4”。这个命令表示停止 4 号线程当前正在执行的语句,而这个方法其实是没有用的。因为占有行锁的是 update 语句,这个语句已经是之前执行完成了的,现在执行 KILL QUERY,无法让这个事务去掉 id=1 上的行锁。
实际上,KILL 4 才有效,也就是说直接断开这个连接。这里隐含的一个逻辑就是,连接被断开的时候,会自动回滚这个连接里面正在执行的线程,也就释放了 id=1 上的行锁

第二类:查询慢

先来看一条你一定知道原因的 SQL 语句:

1
mysql> select * from t where c=50000 limit 1;

由于字段 c 上没有索引,这个语句只能走 id 主键顺序扫描,因此需要扫描 5 万行。
作为确认,你可以看一下慢查询日志。注意,这里为了把所有语句记录到 slow log 里,我在连接后先执行了 set long_query_time=0,将慢查询日志的时间阈值设置为 0。
image.png
Rows_examined 显示扫描了 50000 行。你可能会说,不是很慢呀,11.5 毫秒就返回了,我们线上一般都配置超过 1 秒才算慢查询。但你要记住:坏查询不一定是慢查询。我们这个例子里面只有 10 万行记录,数据量大起来的话,执行时间就线性涨上去了。
扫描行数多,所以执行慢,这个很好理解。

但是接下来,我们再看一个只扫描一行,但是执行很慢的语句。
如下图,是这个例子的 slow log。可以看到,执行的语句是

1
mysql> select * from t where id=1

虽然扫描行数是 1,但执行时间却长达 800 毫秒。
image.png
是不是有点奇怪呢,这些时间都花在哪里了?
如果我把这个 slow log 的截图再往下拉一点,你可以看到下一个语句,select * from t where id=1 lock in share mode,执行时扫描行数也是 1 行,执行时间是 0.2 毫秒。
image.png
看上去是不是更奇怪了?按理说 lock in share mode 还要加锁,时间应该更长才对啊。
可能有的同学已经有答案了。如果你还没有答案的话,我再给你一个提示信息,图 14 是这两个语句的执行输出结果。
image.png

第一个语句的查询结果里 c=1,带 lock in share mode 的语句返回的是 c=1000001。以下是复现步骤
image.png
你看到了,session A 先用 start transaction with consistent snapshot 命令启动了一个事务,之后 session B 才开始执行 update 语句。
session B 执行完 100 万次 update 语句后,id=1 这一行处于什么状态呢?你可以从下图找到答案。
image.png
session B 更新完 100 万次,生成了 100 万个回滚日志 (undo log)。
带 lock in share mode 的 SQL 语句,是当前读,因此会直接读到 1000001 这个结果,所以速度很快;而 select * from t where id=1 这个语句,是一致性读,因此需要从 1000001 开始,依次执行 undo log,执行了 100 万次以后,才将 1 这个结果返回。【回滚日志过大引起的一致性读慢,当前读快】
注意,undo log 里记录的其实是“把 2 改成 1”,“把 3 改成 2”这样的操作逻辑,画成减 1 的目的是方便你看图。

[!important]
关于undolog的基础,强烈建议阅读:http://mysql.taobao.org/monthly/2015/04/01/

问题

1
2
3
begin;
select * from t where c=5 for update;
commit;

这个语句序列是怎么加锁的呢?加的锁又是什么时候释放呢?
在RC隔离级别下,innodb先锁全表的所有行,返回server层,判断c是否等于5,然后释放c!=5的行锁。

关于回答,推荐看以下两个博客的分析
聊聊Select for update到底加了什么锁
select for update行锁or表锁,20个场景分析,还真得看情况
对于其他基础,分享一个博客锁的常见分类
比较好理解的是,这个语句会命中 d=5 的这一行,对应的主键 id=5,因此在 select 语句执行完成后,id=5 这一行会加一个写锁,而且由于两阶段锁协议,这个写锁会在执行 commit 语句的时候释放。
由于字段 d 上没有索引,因此这条查询语句会做全表扫描。那么,其他被扫描到的,但是不满足条件的 5 行记录上,会不会被加锁呢?

自己的一个尝试回答(可能错误):

  • 在RC隔离级别下,如果条件是唯一索引,那么select…for update加的应该是行锁。一共加了三把锁,分别是 IX意向排他锁(表级别的锁,不影响插入)、两把X排他锁(行锁,分别对应唯一索引,主键索引)
  • 在RC隔离级别下,如果条件是主键,那么select…for update锁的也是行。查询条件是id的话,select…for update会加两把锁,分表是IX意向排他锁(表锁,不影响插入)、一把X排他锁(行锁,对于主键索引)
  • 在RC隔离级别下,如果条件是普通索引,且命中,加三把锁,IX意向排他锁(表锁)、两把X排他锁(行锁,分别对应普通索引的X锁,对应主键的X锁)。
  • 如果没有命中数据,则只加一把锁,即IX意向排他锁(表锁,不影响插入)
  • 在RC隔离级别下,如果条件是无索引,一共加了两把锁,分别是:IX意向排他锁(表锁)、一把X排他锁(行锁,对应主键的X锁)。
    • 备注:MySQL在这方面进行了改进,在扫描过程中,若记录不满足过滤条件,会进行解锁操作。同时优化违背了2PL原则
  • 在RR隔离级别下,如果条件是唯一索引,同RC隔离级别
  • 在RR隔离级别下,如果条件是主键,同RC隔离级别
  • 在RR隔离级别下,如果select…for update的查询条件是普通索引的话,命中查询记录的话,除了会加X锁(行锁),IX锁(表锁,不影响插入),还会加Gap 锁(间隙锁,会影响插入)。
  • 在RR隔离级别下,如果条件是无索引,1:IX锁(表级别,意向排他锁),2:每一行的数据记录:都加了X排他锁(行锁,锁的对象对应于主键Id);3:锁为X锁,lock_data值为supremum pseudo-record,它表示:全表行锁,要走聚簇索引进行全部扫描。
    • 什么是supremum pseudo-record:如果查询条件有索引的话,类似于一个(索引最大值,+无穷)的虚拟间隙锁【通俗点讲,其实就是锁表了】

其他问题

[!question]
老师,我们公司今年打算迁数据库,也就是oracle迁到mysql,目前要决定选用哪个版本和分支,不知道要怎么分析,您有什么好的建议吗?

目前5.7是比较主流的,就用最新GA版本吧,记得做全量回归测试

[!question]
老师,最近项目mysql遇到一个难题, 表数据每天230万,一条语句的查询条件有1—40个,最坏情况下40,请问老师有没有好的建议,非常感谢

我觉得应对这种大数据量的多条件的查询的话换种思路,将mysql复杂的组合查询条件导入到es中作为key,主键id作为value,复杂的查询经过es后得到主键id,之后走mysql会好很多,目前公司是这样做的

20 | 幻读是什么,幻读有什么问题?

1
2
3
4
5
6
7
8
9
10
CREATE TABLE `t` (
`id` int(11) NOT NULL,
`c` int(11) DEFAULT NULL,
`d` int(11) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `c` (`c`)
) ENGINE=InnoDB;

insert into t values(0,0,0),(5,5,5),
(10,10,10),(15,15,15),(20,20,20),(25,25,25);

我们知道,InnoDB 的默认事务隔离级别是可重复读,所以本文接下来没有特殊说明的部分,都是设定在可重复读隔离级别下。

幻读是什么?

上一期的语句序列:

1
2
3
begin;
select * from t where d=5 for update;
commit;

现在,我们就来分析一下,如果只在 id=5 这一行加锁【假设,实际不是这样】,而其他行的不加锁的话,会怎么样。
下面先来看一下这个场景(注意:这是我假设的一个场景):(假设只在id=5这一行加锁)
image.png
可以看到,session A 里执行了三次查询,分别是 Q1、Q2 和 Q3。它们的 SQL 语句相同,都是 select * from t where d=5 for update。这个语句的意思你应该很清楚了,查所有 d=5 的行,而且使用的是当前读,并且加上写锁。现在,我们来看一下这三条 SQL 语句,分别会返回什么结果。

  1. Q1 只返回 id=5 这一行;
  2. 在 T2 时刻,session B 把 id=0 这一行的 d 值改成了 5,因此 T3 时刻 Q2 查出来的是 id=0 和 id=5 这两行;
  3. 在 T4 时刻,session C 又插入一行(1,1,5),因此 T5 时刻 Q3 查出来的是 id=0、id=1 和 id=5 的这三行。

其中,Q3 读到 id=1 这一行的现象,被称为“幻读”。也就是说,幻读指的是一个事务在前后两次查询同一个范围的时候,后一次查询看到了前一次查询没有看到的行。
这里,我需要对“幻读”做一个说明:

  1. 在可重复读隔离级别下,普通的查询是快照读,是不会看到别的事务插入的数据的。因此,幻读在“当前读”下才会出现
  2. 上面 session B 的修改结果,被 session A 之后的 select 语句用“当前读”看到,不能称为幻读。幻读仅专指“新插入的行”

不可重复读和幻读的表象都是,在同一个事务中,前后两次读取到的数据不一致,不同的是不可重复读是由于 delete 和 update 操作导致的数据不一致,而幻读是由于 insert 操作导致的数据不一致

如果只从[[基础篇 1-8节#08 事务到底是隔离的还是不隔离的?]]我们学到的事务可见性规则来分析的话,上面这三条 SQL 语句的返回结果都没有问题。
因为这三个查询都是加了 for update,都是当前读。而当前读的规则,就是要能读到所有已经提交的记录的最新值。并且,session B 和 sessionC 的两条语句,执行后就会提交,所以 Q2 和 Q3 就是应该看到这两个事务的操作效果,而且也看到了,这跟事务的可见性规则并不矛盾。
但是,这是不是真的没问题呢?
不,这里还真就有问题。

幻读有什么问题?

首先是语义上的。 session A 在 T1 时刻就声明了,“我要把所有 d=5 的行锁住,不准别的事务进行读写操作”。而实际上,这个语义被破坏了。
如果现在这样看感觉还不明显的话,我再往 session B 和 session C 里面分别加一条 SQL 语句,你再看看会出现什么现象。
image.png
session B 的第二条语句 update t set c=5 where id=0,语义是“我把 id=0、d=5 这一行的 c 值,改成了 5”。
由于在 T1 时刻,session A 还只是给 id=5 这一行加了行锁, 并没有给 id=0 这行加上锁。因此,session B 在 T2 时刻,是可以执行这两条 update 语句的。这样,就破坏了 session A 里 Q1 语句要锁住所有 d=5 的行的加锁声明
session C 也是一样的道理,对 id=1 这一行的修改,也是破坏了 Q1 的加锁声明
其次,是数据一致性的问题。
我们知道,锁的设计是为了保证数据的一致性。而这个一致性,不止是数据库内部数据状态在此刻的一致性,还包含了数据和日志在逻辑上的一致性
为了说明这个问题,我给 session A 在 T1 时刻再加一个更新语句,即:update t set d=100 where d=5。
image.png
update 的加锁语义和 select …for update 是一致的,所以这时候加上这条 update 语句也很合理。session A 声明说“要给 d=5 的语句加上锁”,就是为了要更新数据,新加的这条 update 语句就是把它认为加上了锁的这一行的 d 值修改成了 100。
现在,我们来分析一下图 3 执行完成后,数据库里会是什么结果。

  1. 经过 T1 时刻,id=5 这一行变成 (5,5,100),当然这个结果最终是在 T6 时刻正式提交的 ;
  2. 经过 T2 时刻,id=0 这一行变成 (0,5,5);
  3. 经过 T4 时刻,表里面多了一行 (1,5,5);
  4. 其他行跟这个执行序列无关,保持不变。

这样看,这些数据也没啥问题,但是我们再来看看这时候 binlog 里面的内容

  1. T2 时刻,session B 事务提交,写入了两条语句;
  2. T4 时刻,session C 事务提交,写入了两条语句;
  3. T6 时刻,session A 事务提交,写入了 update t set d=100 where d=5 这条语句。

我统一放到一起的话,就是这样的:

1
2
3
4
5
6
7
update t set d=5 where id=0; /*(0,0,5)*/
update t set c=5 where id=0; /*(0,5,5)*/

insert into t values(1,1,5); /*(1,1,5)*/
update t set c=5 where id=1; /*(1,5,5)*/

update t set d=100 where d=5;/* 所有 d=5 的行,d 改成 100*/

好,你应该看出问题了。这个语句序列,不论是拿到备库去执行,还是以后用 binlog 来克隆一个库,这三行的结果,都变成了 (0,5,100)、(1,5,100) 和 (5,5,100)。
也就是说,id=0 和 id=1 这两行,发生了数据不一致。这个问题很严重,是不行的。
到这里,我们再回顾一下,这个数据不一致到底是怎么引入的?
我们分析一下可以知道,这是我们假设“select * from t where d=5 for update 这条语句只给 d=5 这一行,也就是 id=5 的这一行加锁”导致的。
所以我们认为,上面的设定不合理,要改。
那怎么改呢?我们把扫描过程中碰到的行,也都加上写锁,再来看看执行效果。
image.png
由于 session A 把所有的行都加了写锁,所以 session B 在执行第一个 update 语句的时候就被锁住了。需要等到 T6 时刻 session A 提交以后,session B 才能继续执行。
这样对于 id=0 这一行,在数据库里的最终结果还是 (0,5,5)。在 binlog 里面,执行序列是这样的:

1
2
3
4
5
6
7
insert into t values(1,1,5); /*(1,1,5)*/
update t set c=5 where id=1; /*(1,5,5)*/

update t set d=100 where d=5;/* 所有 d=5 的行,d 改成 100*/

update t set d=5 where id=0; /*(0,0,5)*/
update t set c=5 where id=0; /*(0,5,5)*/

可以看到,按照日志顺序执行,id=0 这一行的最终结果也是 (0,5,5)。所以,id=0 这一行的问题解决了。
但同时你也可以看到,id=1 这一行,在数据库里面的结果是 (1,5,5),而根据 binlog 的执行结果是 (1,5,100),也就是说幻读的问题还是没有解决。为什么我们已经这么“凶残”地,把所有的记录都上了锁,还是阻止不了 id=1 这一行的插入和更新呢?
原因很简单。在 T3 时刻,我们给所有行加锁的时候,id=1 这一行还不存在,不存在也就加不上锁。
也就是说,即使把所有的记录都加上锁,还是阻止不了新插入的记录, 这也是为什么“幻读”会被单独拿出来解决的原因。
到这里,其实我们刚说明完文章的标题 :幻读的定义和幻读有什么问题。
接下来,我们再看看 InnoDB 怎么解决幻读的问题。

如何解决幻读?

现在你知道了,产生幻读的原因是,行锁只能锁住行,但是新插入记录这个动作,要更新的是记录之间的“间隙”。因此,为了解决幻读问题,InnoDB 只好引入新的锁,也就是间隙锁 (Gap Lock)。
顾名思义,间隙锁,锁的就是两个值之间的空隙。比如文章开头的表 t,初始化插入了 6 个记录,这就产生了 7 个间隙。
image.png
这样,当你执行 select * from t where d=5 for update 的时候,就不止是给数据库中已有的 6 个记录加上了行锁,还同时加了 7 个间隙锁。这样就确保了无法再插入新的记录。
也就是说这时候,在一行行扫描的过程中,不仅将给行加上了行锁,还给行两边的空隙,也加上了间隙锁。
现在你知道了,数据行是可以加上锁的实体,数据行之间的间隙,也是可以加上锁的实体。但是间隙锁跟我们之前碰到过的锁都不太一样。
比如行锁,分成读锁和写锁。下图就是这两种类型行锁的冲突关系。
image.png
也就是说,跟行锁有冲突关系的是“另外一个行锁”。

但是间隙锁不一样,跟间隙锁存在冲突关系的,是“往这个间隙中插入一个记录”这个操作。 间隙锁之间都不存在冲突关系。
这句话不太好理解,我给你举个例子:
image.png
这里 session B 并不会被堵住。因为表 t 里并没有 c=7 这个记录,因此 session A 加的是间隙锁 (5,10)。而 session B 也是在这个间隙加的间隙锁。它们有共同的目标,即:保护这个间隙,不允许插入值。但,它们之间是不冲突的。
间隙锁和行锁合称 next-key lock,每个 next-key lock 是前开后闭区间。也就是说,我们的表 t 初始化以后,如果用 select * from t for update 要把整个表所有记录锁起来,就形成了 7 个 next-key lock,分别是 (-∞,0]、(0,5]、(5,10]、(10,15]、(15,20]、(20, 25]、(25, +supremum]。

备注:这篇文章中,如果没有特别说明,我们把间隙锁记为开区间,把 next-key lock 记为前开后闭区间

你可能会问说,这个 supremum 从哪儿来的呢?
这是因为 +∞是开区间。实现上,InnoDB 给每个索引加了一个不存在的最大值 supremum,这样才符合我们前面说的“都是前开后闭区间”。
间隙锁和 next-key lock 的引入,帮我们解决了幻读的问题,但同时也带来了一些“困扰”。
在前面的文章中,就有同学提到了这个问题。我把他的问题转述一下,对应到我们这个例子的表来说,业务逻辑这样的:任意锁住一行,如果这一行不存在的话就插入,如果存在这一行就更新它的数据,代码如下:

1
2
3
4
5
6
7
8
9
begin;
select * from t where id=N for update;

/* 如果行不存在 */
insert into t values(N,N,N);
/* 如果行存在 */
update t set d=N set id=N;

commit;

可能你会说,这个不是 insert … on duplicate key update 就能解决吗?但其实在有多个唯一键的时候,这个方法是不能满足这位提问同学的需求的。至于为什么,我会在后面的文章中再展开说明。
可能你会说,这个不是 insert … on duplicate key update 就能解决吗?但其实在有多个唯一键的时候,这个方法是不能满足这位提问同学的需求的。至于为什么,我会在后面的文章中再展开说明。
现在,我们就只讨论这个逻辑。
这个同学碰到的现象是,这个逻辑一旦有并发,就会碰到死锁。你一定也觉得奇怪,这个逻辑每次操作前用 for update 锁起来,已经是最严格的模式了,怎么还会有死锁呢?
这里,我用两个 session 来模拟并发,并假设 N=9。
image.png
你看到了,其实都不需要用到后面的 update 语句,就已经形成死锁了。我们按语句执行顺序来分析一下:

  1. session A 执行 select … for update 语句,由于 id=9 这一行并不存在,因此会加上间隙锁 (5,10);
  2. session B 执行 select … for update 语句,同样会加上间隙锁 (5,10),间隙锁之间不会冲突,因此这个语句可以执行成功
  3. session B 试图插入一行 (9,9,9),被 session A 的间隙锁挡住了,只好进入等待;
  4. session A 试图插入一行 (9,9,9),被 session B 的间隙锁挡住了。

至此,两个 session 进入互相等待状态,形成死锁。当然,InnoDB 的死锁检测马上就发现了这对死锁关系,让 session A 的 insert 语句报错返回了。
你现在知道了,间隙锁的引入,可能会导致同样的语句锁住更大的范围,这其实是影响了并发度的。其实,这还只是一个简单的例子,在下一篇文章中我们还会碰到更多、更复杂的例子。
你可能会说,为了解决幻读的问题,我们引入了这么一大串内容,有没有更简单一点的处理方法呢。
我在文章一开始就说过,如果没有特别说明,今天和你分析的问题都是在可重复读隔离级别下的,间隙锁是在可重复读隔离级别下才会生效的。所以,你如果把隔离级别设置为读提交的话,就没有间隙锁了。但同时,你要解决可能出现的数据和日志不一致问题,需要把 binlog 格式设置为 row。这,也是现在不少公司使用的配置组合。
【这段深有体会,确实有一些系统的死锁会相对比较多,在将隔离级别调为RC之后改善了很多】

补充阅读:MySQL 默认隔离级别是RR,为什么阿里等大厂会改成RC?
在数据主从同步时,不同格式的 binlog 也对事务隔离级别有要求。
MySQL的binlog主要支持三种格式,分别是statement、row以及mixed,但是,RC 隔离级别只支持row格式的binlog。如果指定了mixed作为 binlog 格式,那么如果使用RC,服务器会自动使用基于row 格式的日志记录。
而 RR 的隔离级别同时支持statement、row以及mixed三种。

前面文章的评论区有同学留言说,他们公司就使用的是读提交隔离级别加 binlog_format=row 的组合。他曾问他们公司的 DBA 说,你为什么要这么配置。DBA 直接答复说,因为大家都这么用呀。
所以,这个同学在评论区就问说,这个配置到底合不合理。
关于这个问题本身的答案是,如果读提交隔离级别够用,也就是说,业务不需要可重复读的保证,这样考虑到读提交下操作数据的锁范围更小(没有间隙锁),这个选择是合理的

但其实我想说的是,配置是否合理,跟业务场景有关,需要具体问题具体分析。

核心问题:什么业务场景,需要可重复读来保证?
主要是一些金融类业务,例如订单处理、账户余额查询、统计报表生成、业务状态查询

但是,如果 DBA 认为之所以这么用的原因是“大家都这么用”,那就有问题了,或者说,迟早会出问题。
比如说,大家都用读提交,可是逻辑备份的时候,mysqldump 为什么要把备份线程设置成可重复读呢?(这个我在前面的文章中已经解释过了,你可以再回顾下[[基础篇 1-8节#06 全局锁和表锁 :给表加个字段怎么有这么多阻碍?]]的内容)
然后,在备份期间,备份线程用的是可重复读,而业务线程用的是读提交。同时存在两种事务隔离级别,会不会有问题?
进一步地,这两个不同的隔离级别现象有什么不一样的,关于我们的业务,“用读提交就够了”这个结论是怎么得到的?
如果业务开发和运维团队这些问题都没有弄清楚,那么“没问题”这个结论,本身就是有问题的。

对于非索引字段进行update或select .. for update操作,代价极高。所有记录上锁,以及所有间隔的锁。
对于索引字段进行上述操作,代价一般。只有索引字段本身和附近的间隔会被加锁。
所以update、delete语句用不上索引是很恐怖的

其他问题

[!question]
如何看锁信息 ?

设置参数:set global innodb_status_output_locks=1;
然后使用show engine innodb status\G 查看,TRANSACTIONS 相关的信息下,就能看到锁信息。

[!question]
我看一些文章都说幻读是rr级别下的 , rc 是不可重复读 。请问是我理解有误还是文章写的不准确

其实读提交隔离级别下看到的,严格来说不算。
因为这个就是读提交隔离级别下“设计内”的问题😄
这种感觉就是,对于读提交隔离级别,这个算“feature”,(是不是很熟悉)
对于可重复读,这个是”bug”, 所以要解决,称呼这个bug为幻读😄

21 | 为什么我只改一行的语句,锁这么多?

MySQL 后面的版本可能会改变加锁策略,所以本节规则只限于截止到现在的最新版本,即 5.x 系列 <=5.7.24,8.0 系列 <=8.0.13。
因为间隙锁在可重复读隔离级别下才有效,所以本篇文章接下来的描述,若没有特殊说明,默认是可重复读隔离级别。
我总结的加锁规则里面,包含了两个“原则”、两个“优化”和一个“bug”。

  1. 原则 1:加锁的基本单位是 next-key lock。希望你还记得,next-key lock 是前开后闭区间。
  2. 原则 2:查找过程中访问到的对象才会加锁
  3. 优化 1:索引上的等值查询,给唯一索引加锁的时候,next-key lock 退化为行锁。【注意这一行如果不存在的话还是间隙锁】
  4. 优化 2:索引上的等值查询,向右遍历时且最后一个值不满足等值条件的时候,next-key lock 退化为间隙锁。【order by desc可能不会退化为间隙锁】
  5. 一个 bug:唯一索引上的范围查询会访问到不满足条件的第一个值为止

表t的建表语句和初始化语句如下

1
2
3
4
5
6
7
8
9
10
CREATE TABLE `t` (
`id` int(11) NOT NULL,
`c` int(11) DEFAULT NULL,
`d` int(11) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `c` (`c`)
) ENGINE=InnoDB;

insert into t values(0,0,0),(5,5,5),
(10,10,10),(15,15,15),(20,20,20),(25,25,25);

案例一:等值查询间隙锁

image.png
由于表 t 中没有 id=7 的记录,所以用我们上面提到的加锁规则判断一下的话:

  1. 根据原则 1,加锁单位是 next-key lock,session A 加锁范围就是 (5,10];
  2. 同时根据优化 2,这是一个等值查询 (id=7),而 id=10 不满足查询条件,next-key lock 退化成间隙锁,因此最终加锁的范围是 (5,10)。

所以,session B 要往这个间隙里面插入 id=8 的记录会被锁住,但是 session C 修改 id=10 这行是可以的。

案例二:非唯一索引等值锁

第二个例子是关于覆盖索引上的锁:
image.png

  1. 根据原则 1,加锁单位是 next-key lock,因此会给 (0,5] 加上 next-key lock。
  2. 要注意 c 是普通索引,因此仅访问 c=5 这一条记录是不能马上停下来的,需要向右遍历,查到 c=10 才放弃。根据原则 2,访问到的都要加锁,因此要给 (5,10] 加 next-key lock。【应该这样描述更加容易理解,因为c不是唯一索引,所以需要向下遍历到第一个不符合条件的值才能停止】
  3. 但是同时这个符合优化 2:等值判断,向右遍历,最后一个值不满足 c=5 这个等值条件,因此退化成间隙锁 (5,10)。
  4. 根据原则 2 ,只有访问到的对象才会加锁 ,这个查询使用覆盖索引,并不需要访问主键索引,所以主键索引上没有加任何锁,这就是为什么 session B 的 update 语句可以执行完成。【如果是覆盖索引就不会给主键加锁,否则就会给主键加锁。】

但 session C 要插入一个 (7,7,7) 的记录,就会被 session A 的间隙锁 (5,10) 锁住。
需要注意,在这个例子中,lock in share mode 只锁覆盖索引,但是如果是 for update 就不一样了。 执行 for update 时,系统会认为你接下来要更新数据,因此会顺便给主键索引上满足条件的行加上行锁。
这个例子说明,锁是加在索引上的;同时,它给我们的指导是,如果你要用 lock in share mode 来给行加读锁避免数据被更新的话,就必须得绕过覆盖索引的优化,在查询字段中加入索引中不存在的字段。比如,将 session A 的查询语句改成 select d from t where c=5 lock in share mode。你可以自己验证一下效果。

案例三:主键索引范围锁

第三个例子是关于范围查询的。
举例之前,你可以先思考一下这个问题:对于我们这个表 t,下面这两条查询语句,加锁范围相同吗?

1
2
mysql> select * from t where id=10 for update;
mysql> select * from t where id>=10 and id<11 for update;

你可能会想,id 定义为 int 类型,这两个语句就是等价的吧?其实,它们并不完全等价。
在逻辑上,这两条查语句肯定是等价的,但是它们的加锁规则不太一样。现在,我们就让 session A 执行第二个查询语句,来看看加锁效果。
image.png
现在我们就用前面提到的加锁规则,来分析一下 session A 会加什么锁呢?

  1. 开始执行的时候,要找到第一个 id=10 的行,因此本该是 next-key lock(5,10]。 根据优化 1, 主键 id 上的等值条件,退化成行锁,只加了 id=10 这一行的行锁。
  2. 范围查找就往后继续找,找到 id=15 这一行停下来,因此需要加 next-key lock(10,15]。

所以,session A 这时候锁的范围就是主键索引上,行锁 id=10 和 next-key lock(10,15]。这样,session B 和 session C 的结果你就能理解了。
这里你需要注意一点,首次 session A 定位查找 id=10 的行的时候,是当做等值查询来判断的,而向右扫描到 id=15 的时候,用的是范围查询判断。

案例四:非唯一索引范围锁

接下来,我们再看两个范围查询加锁的例子,你可以对照着案例三来看。
需要注意的是,与案例三不同的是,案例四中查询语句的 where 部分用的是字段 c。
image.png
这次 session A 用字段 c 来判断,加锁规则跟案例三唯一的不同是:在第一次用 c=10 定位记录的时候,索引 c 上加了 (5,10] 这个 next-key lock 后,由于索引 c 是非唯一索引,没有优化规则,也就是说不会蜕变为行锁,因此最终 sesion A 加的锁是,索引 c 上的 (5,10] 和 (10,15] 这两个 next-key lock。
所以从结果上来看,sesson B 要插入(8,8,8) 的这个 insert 语句时就被堵住了。
这里需要扫描到 c=15 才停止扫描,是合理的,因为 InnoDB 要扫到 c=15,才知道不需要继续往后找了。

案例五:唯一索引范围锁 bug

image.png
session A 是一个范围查询,按照原则 1 的话,应该是索引 id 上只加 (10,15] 这个 next-key lock,并且因为 id 是唯一键,所以循环判断到 id=15 这一行就应该停止了。
但是实现上,InnoDB 会往前扫描到第一个不满足条件的行为止,也就是 id=20。而且由于这是个范围扫描,因此索引 id 上的 (15,20] 这个 next-key lock 也会被锁上。【InnoDB(5.x 系列 <=5.7.24,8.0 系列 <=8.0.13。)的“bug”】
所以你看到了,session B 要更新 id=20 这一行,是会被锁住的。同样地,session C 要插入 id=16 的一行,也会被锁住。
照理说,这里锁住 id=20 这一行的行为,其实是没有必要的。因为扫描到 id=15,就可以确定不用往后再找了。但实现上还是这么做了,因此我认为这是个 bug。
我也曾找社区的专家讨论过,官方 bug 系统上也有提到,但是并未被 verified。所以,认为这是 bug 这个事儿,也只能算我的一家之言,如果你有其他见解的话,也欢迎你提出来。

案例六:非唯一索引上存在”等值”的例子

接下来的例子,是为了更好地说明“间隙”这个概念。这里,我给表 t 插入一条新记录。

1
mysql> insert into t values(30,10,30);

新插入的这一行 c=10,也就是说现在表里有两个 c=10 的行。那么,这时候索引 c 上的间隙是什么状态了呢?你要知道,由于非唯一索引上包含主键的值,所以是不可能存在“相同”的两行的。
image.png
可以看到,虽然有两个 c=10,但是它们的主键值 id 是不同的(分别是 10 和 30),因此这两个 c=10 的记录之间,也是有间隙的。
图中我画出了索引 c 上的主键 id。为了跟间隙锁的开区间形式进行区别,我用 (c=10,id=30) 这样的形式,来表示索引上的一行。
现在,我们来看一下案例六。
这次我们用 delete 语句来验证。注意,delete 语句加锁的逻辑,其实跟 select … for update 是类似的,也就是我在文章开始总结的两个“原则”、两个“优化”和一个“bug”。
image.png
这时,session A 在遍历的时候,先访问第一个 c=10 的记录。同样地,根据原则 1,这里加的是 (c=5,id=5) 到 (c=10,id=10) 这个 next-key lock。
然后,session A 向右查找,直到碰到 (c=15,id=15) 这一行,循环才结束。根据优化 2,这是一个等值查询,向右查找到了不满足条件的行,所以会退化成 (c=10,id=10) 到 (c=15,id=15) 的间隙锁。
也就是说,这个 delete 语句在索引 c 上的加锁范围,就是下图中蓝色区域覆盖的部分。
image.png
这个蓝色区域左右两边都是虚线,表示开区间,即 (c=5,id=5) 和 (c=15,id=15) 这两行上都没有锁。

举个例子:如果session b插入(4,5,50),不会被锁,如果插入(6,5,50) 会被锁住,因为6,5,50根据主键来排的话 是在5,5,10后面的【二级索引叶子节点存储的是主键值,而二级索引的叶子节点是有序的,这样(6,5,5)插入的时候就会排序到(5,5,5)之后,进入了间隙锁范围内——>即二级索引的间隙锁】

案例七:limit 语句加锁

例子 6 也有一个对照案例,场景如下所示:
image.png
这个例子里,session A 的 delete 语句加了 limit 2。你知道表 t 里 c=10 的记录其实只有两条,因此加不加 limit 2,删除的效果都是一样的,但是加锁的效果却不同。可以看到,session B 的 insert 语句执行通过了,跟案例六的结果不同。
这是因为,案例七里的 delete 语句明确加了 limit 2 的限制,因此在遍历到 (c=10, id=30) 这一行之后,满足条件的语句已经有两条,循环就结束了。
因此,索引 c 上的加锁范围就变成了从(c=5,id=5) 到(c=10,id=30) 这个前开后闭区间,如下图所示:
image.png
可以看到,(c=10,id=30)之后的这个间隙并没有在加锁范围里,因此 insert 语句插入 c=12 是可以执行成功的。
这个例子对我们实践的指导意义就是,在删除数据的时候尽量加 limit。这样不仅可以控制删除数据的条数,让操作更安全,还可以减小加锁的范围

案例八:一个死锁的例子

前面的例子中,我们在分析的时候,是按照 next-key lock 的逻辑来分析的,因为这样分析比较方便。最后我们再看一个案例,目的是说明:next-key lock 实际上是间隙锁和行锁加起来的结果。

你一定会疑惑,这个概念不是一开始就说了吗?不要着急,我们先来看下面这个例子:
image.png
现在,我们按时间顺序来分析一下为什么是这样的结果。

  1. session A 启动事务后执行查询语句加 lock in share mode,在索引 c 上加了 next-key lock(5,10] 和间隙锁 (10,15);
  2. session B 的 update 语句也要在索引 c 上加 next-key lock(5,10] ,进入锁等待;
  3. 然后 session A 要再插入 (8,8,8) 这一行,被 session B 的间隙锁锁住。由于出现了死锁,InnoDB 让 session B 回滚。

你可能会问,session B 的 next-key lock 不是还没申请成功吗?
其实是这样的,session B 的“加 next-key lock(5,10] ”操作,实际上分成了两步,先是加 (5,10) 的间隙锁,加锁成功;然后加 c=10 的行锁,这时候才被锁住的。【前面提到过,间隙锁和间隙锁之间并不冲突,间隙锁和insert到这个间隙的语句才会冲突】
也就是说,我们在分析加锁规则的时候可以用 next-key lock 来分析。但是要知道,具体执行的时候,是要分成间隙锁和行锁两段来执行的

读提交隔离级别下还有一个优化,即:语句执行过程中加上的行锁,在语句执行完成后,就要把“不满足条件的行”上的行锁直接释放了,不需要等到事务提交。
也就是说,读提交隔离级别下,锁的范围更小,锁的时间更短,这也是不少业务都默认使用读提交隔离级别的原因

小结

这里我再次说明一下,我们上面的所有案例都是在可重复读隔离级别 (repeatable-read) 下验证的。同时,可重复读隔离级别遵守两阶段锁协议,所有加锁的资源,都是在事务提交或者回滚的时候才释放的
在最后的案例中,你可以清楚地知道 next-key lock 实际上是由间隙锁加行锁实现的。如果切换到读提交隔离级别 (read-committed) 的话,就好理解了,过程中去掉间隙锁的部分,也就是只剩下行锁的部分。
其实读提交隔离级别在外键场景下还是有间隙锁,相对比较复杂,我们今天先不展开。
另外,在读提交隔离级别下还有一个优化,即:语句执行过程中加上的行锁,在语句执行完成后,就要把“不满足条件的行”上的行锁直接释放了,不需要等到事务提交
也就是说,读提交隔离级别下,锁的范围更小,锁的时间更短,这也是不少业务都默认使用读提交隔离级别的原因。
不过,我希望你学过今天的课程以后,可以对 next-key lock 的概念有更清晰的认识,并且会用加锁规则去判断语句的加锁范围。
在业务需要使用可重复读隔离级别的时候,能够更细致地设计操作数据库的语句,解决幻读问题的同时,最大限度地提升系统并行处理事务的能力。

[!abstract]
本节的内容可以总结为如下:
1、查询过程中访问到的对象才会加锁,而加锁的基本单位是next-key lock(前开后闭);
2、等值查询上MySQL的优化:索引上的等值查询,如果是唯一索引,next-key lock会退化为行锁,如果不是唯一索引,需要访问到第一个不满足条件的值,此时next-key lock会退化为间隙锁;
3、范围查询:无论是否是唯一索引,范围查询都需要访问到不满足条件的第一个值为止;

其他问题

[!info]
有一个小伙伴通过画图的案例,以MySQL 中关于gap lock / next-key lock 的一个问题来复习本质的内容,可以参考下
https://blog.hellowood.dev/posts/mysql-中关于gap-lock-next-key-lock-的一个问题/
注意:答主的分析是有误的,真正的解释如下

  1. INSERT INTO z VALUES (2, 4);/*success*/ id=2 b=4, 这时4可以插在第二行(3,4)数据之前或者之后,但因为id=2,只能插在第二行,因为也会按照主键id排序,这时可以插入成功
  2. INSERT INTO z VALUES (2, 8);/*blocked*/ id=2 b=8, 8可以插在第四行(7,8)前或者后,但是因为2比第四行的id=7小,所以只会插在前面,但这里b已经被锁住了,只能blocked了
  3. INSERT INTO z VALUES (4, 4);/*blocked*/ 和以上分析一致,只能插在第二行后面,可是这个范围b上已加锁,也只能被block住
    原因:innodb的二级索引隐含了主键id,非唯一索引索引值相同的情况是按照主键id排序
    Update/delete语句,通过辅助索引加锁的语句,考虑额外地主键索引上也要加锁。–可以看看姜承尧《MYSQL内核》第九章

[!question]
Gap是一个动态的概念,以下是例子
老师,你好: 我练习实例的时候发现一个问题:如 案例五:唯一索引范围锁 bug
begin;
select * from t where id>10 and id<=15 for update;
1、执行如上语句加锁范围(10,15]和(15,20];
2、因为10未加锁,所以我单独再开一个连接,执行delete from t where id=10;不会锁等待,能正常删除;
3、但是我再执行insert into t values(10,10,10); 语句会等待,无法正常执行;
4、经过分析我发现第一个连接执行的语句的加锁范围已经变成(5,15]和(15,20],代表锁蔓延了;这是什么原因呢?

delete id=10之后,为了原先的(10,15]中的gap锁,会用10的上一个值5来代替。
即更新边界值导致间隙变大,再改成原值改不回去,被阻塞

[!faq]
RC隔离界别下的“semi-consistent” read优化
版本:mysql 5.6.39
CREATE TABLE t (
a int(11) NOT NULL,
b int(11) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into t values(1,1),(2,2),(3,3),(4,4),(5,5);
采用READ-COMMITTED隔离级别
案例1、
session A:
begin;
update t set a=6 where b=1;
session B:
begin;
update t set a=7 where b=2;
A和B均能执行成功
问题1:官档上说对于RC且全表扫描的update,先逐行添加行锁然后释放掉不符合where条件的,那么session A成功对(1,1)加锁,理论上session B在扫描(1,1)并尝试加锁时会被阻塞,为何还能执行成功?官档链接:https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
案例2:
session A:
begin;
update t set a=6 where b=1;
session B:
begin;
delete from t where b=2; – 被阻塞
问题2:为何案例1 中的session B不会被阻塞,而案例2的却被session A的行数阻塞,update和delete都是全部扫描,难道加锁机制不一样?

好问题,在read-commited隔离级别下,update语句
有一个“semi-consistent” read优化,
意思是,如果update语句碰到一个已经被锁了的行,会读入最新的版本,然后判断一下是不是满足查询条件,
a)如果不满足,就直接跳过;
b) 如果满足,才进入锁等待
你的第二个问题:这个策略,只对update有效,delete无效

问题

下面这个图的执行序列中,为什么 session B 的 insert 语句会被堵住。
image.png
我们用上一篇的加锁规则来分析一下,看看 session A 的 select 语句加了哪些锁:

  1. 由于是 order by c desc,第一个要定位的是索引 c 上“最右边的”c=20 的行,所以会加上间隙锁 (20,25) 和 next-key lock (15,20]。【索引反着找不会退化为间隙锁,C=10还是要锁的,如果不锁可能被删除】(这点很容易迷惑)
  2. 在索引 c 上向左遍历,要扫描到 c=10 才停下来,所以 next-key lock 会加到 (5,10],这正是阻塞 session B 的 insert 语句的原因。【加锁的基本单位是next-key-lock ,扫描过程中扫到了c=10 ,加锁就就是加的(5,10]】
  3. 在扫描过程中,c=20、c=15、c=10 这三行都存在值,由于是 select *,所以会在主键 id 上加三个行锁

因此,session A 的 select 语句锁的范围就是:【备注:即两个索引上都会有锁】

  1. 索引 c 上 (5, 25);
  2. 主键索引上 id=15、20 两个行锁。

这里,我再啰嗦下,你会发现我在文章中,每次加锁都会说明是加在“哪个索引上”的。因为,锁就是加在索引上的,这是 InnoDB 的一个基础设定,需要你在分析问题的时候要一直记得。

22 | MySQL有哪些“饮鸩止渴”提高性能的方法?

短连接风暴

正常的短连接模式就是连接到数据库后,执行很少的 SQL 语句就断开,下次需要的时候再重连。如果使用的是短连接,在业务高峰期的时候,就可能出现连接数突然暴涨的情况。
[[基础篇 1-8节]]中说过MySQL 建立连接的过程,成本是很高的。除了正常的网络连接三次握手外,还需要做登录权限判断和获得这个连接的数据读写权限
在数据库压力比较小的时候,这些额外的成本并不明显。
但是,短连接模型存在一个风险,就是一旦数据库处理得慢一些,连接数就会暴涨。max_connections 参数,用来控制一个 MySQL 实例同时存在的连接数的上限,超过这个值,系统就会拒绝接下来的连接请求,并报错提示“Too many connections”。对于被拒绝连接的请求来说,从业务角度看就是数据库不可用。
在机器负载比较高的时候,处理现有请求的时间变长,每个连接保持的时间也更长。这时,再有新建连接的话,就可能会超过 max_connections 的限制。
碰到这种情况时,一个比较自然的想法,就是调高 max_connections 的值。但这样做是有风险的。因为设计 max_connections 这个参数的目的是想保护 MySQL,如果我们把它改得太大,让更多的连接都可以进来,那么系统的负载可能会进一步加大,大量的资源耗费在权限验证等逻辑上,结果可能是适得其反,已经连接的线程拿不到 CPU 资源去执行业务的 SQL 请求。
那么这种情况下,你还有没有别的建议呢?我这里还有两种方法,但要注意,这些方法都是有损的。
第一种方法:先处理掉那些占着连接但是不工作的线程。
max_connections 的计算,不是看谁在 running,是只要连着就占用一个计数位置。对于那些不需要保持的连接,我们可以通过 kill connection 主动踢掉。这个行为跟事先设置 wait_timeout 的效果是一样的。设置 wait_timeout 参数表示的是,一个线程空闲 wait_timeout 这么多秒之后,就会被 MySQL 直接断开连接。【show variables like ‘wait_timeout’; 本机是28880】
但是需要注意,在 show processlist 的结果里,踢掉显示为 sleep 的线程,可能是有损的。我们来看下面这个例子。
image.png
在上面这个例子里,如果断开 session A 的连接,因为这时候 session A 还没有提交,所以 MySQL 只能按照回滚事务来处理;而断开 session B 的连接,就没什么大影响。所以,如果按照优先级来说,你应该优先断开像 session B 这样的事务外空闲的连接。
但是,怎么判断哪些是事务外空闲的呢?session C 在 T 时刻之后的 30 秒执行 show processlist,看到的结果是这样的。
image.png
图中 id=4 和 id=5 的两个会话都是 Sleep 状态。而要看事务具体状态的话,你可以查 information_schema 库的 innodb_trx 表
image.png
这个结果里,trx_mysql_thread_id=4,表示 id=4 的线程还处在事务中。
因此,如果是连接数过多,你可以优先断开事务外空闲太久的连接;如果这样还不够,再考虑断开事务内空闲太久的连接。
从服务端断开连接使用的是 kill connection + id 的命令, 一个客户端处于 sleep 状态时,它的连接被服务端主动断开后,这个客户端并不会马上知道。直到客户端在发起下一个请求的时候,才会收到这样的报错“ERROR 2013 (HY000): Lost connection to MySQL server during query”。
从数据库端主动断开连接可能是有损的,尤其是有的应用端收到这个错误后,不重新连接,而是直接用这个已经不能用的句柄重试查询。这会导致从应用端看上去,“MySQL 一直没恢复”。【在spring项目中使用不同的数据库连接池框架,可能会有不同的结果】
你可能觉得这是一个冷笑话,但实际上我碰到过不下 10 次。
所以,如果你是一个支持业务的 DBA,不要假设所有的应用代码都会被正确地处理。即使只是一个断开连接的操作,也要确保通知到业务开发团队。
第二种方法:减少连接过程的消耗。
有的业务代码会在短时间内先大量申请数据库连接做备用,如果现在数据库确认是被连接行为打挂了,那么一种可能的做法,是让数据库跳过权限验证阶段。
跳过权限验证的方法是:重启数据库,并使用 –skip-grant-tables 参数启动。这样,整个 MySQL 会跳过所有的权限验证阶段,包括连接过程和语句执行过程在内。【重置、找回密码使用的就是这个方式】
但是,这种方法特别符合我们标题里说的“饮鸩止渴”,风险极高,是我特别不建议使用的方案。尤其你的库外网可访问的话,就更不能这么做了。
在 MySQL 8.0 版本里,如果你启用–skip-grant-tables 参数,MySQL 会默认把 –skip-networking 参数打开,表示这时候数据库只能被本地的客户端连接。可见,MySQL 官方对 skip-grant-tables 这个参数的安全问题也很重视。
除了短连接数暴增可能会带来性能问题外,实际上,我们在线上碰到更多的是查询或者更新语句导致的性能问题。其中,查询问题比较典型的有两类,一类是由新出现的慢查询导致的,一类是由 QPS(每秒查询数)突增导致的。而关于更新语句导致的性能问题,我会在下一篇文章和你展开说明。

慢查询性能问题

在 MySQL 中,会引发性能问题的慢查询,大体有以下三种可能:

  1. 索引没有设计好;
  2. SQL 语句没写好;
  3. MySQL 选错了索引。

接下来,我们就具体分析一下这三种可能,以及对应的解决方案。
导致慢查询的第一种可能是,索引没有设计好。
这种场景一般就是通过紧急创建索引来解决。MySQL 5.6 版本以后,创建索引都支持 Online DDL 了,对于那种高峰期数据库已经被这个语句打挂了的情况,最高效的做法就是直接执行 alter table 语句
比较理想的是能够在备库先执行。假设你现在的服务是一主一备,主库 A、备库 B,这个方案的大致流程是这样的:

  1. 在备库 B 上执行 set sql_log_bin=off,也就是不写 binlog,然后执行 alter table 语句加上索引;
  2. 执行主备切换;
  3. 这时候主库是 B,备库是 A。在 A 上执行 set sql_log_bin=off,然后执行 alter table 语句加上索引。

这是一个“古老”的 DDL 方案。平时在做变更的时候,你应该考虑类似 gh-ost 这样的方案,更加稳妥。但是在需要紧急处理时,上面这个方案的效率是最高的。
导致慢查询的第二种可能是,语句没写好。
比如,我们犯了在[[#18 为什么这些SQL语句逻辑相同,性能却差异巨大?]]中提到的那些错误,导致语句没有使用上索引。
这时,我们可以通过改写 SQL 语句来处理。MySQL 5.7 提供了 query_rewrite 功能,可以把输入的一种语句改写成另外一种模式
比如,语句被错误地写成了 select * from t where id + 1 = 10000,你可以通过下面的方式,增加一个语句改写规则。

1
mysql> insert into query_rewrite.rewrite_rules(pattern, replacement, pattern_database) values ("select * from t where id + 1 = ?", "select * from t where id = ? - 1", "db1"); call query_rewrite.flush_rewrite_rules();

这里,call query_rewrite.flush_rewrite_rules() 这个存储过程,是让插入的新规则生效,也就是我们说的“查询重写”。你可以用图 4 中的方法来确认改写规则是否生效。
image.png
导致慢查询的第三种可能,就是碰上了我们在第 10 篇文章《MySQL 为什么有时候会选错索引?》中提到的情况,MySQL 选错了索引。
这时候,应急方案就是给这个语句加上 force index
同样地,使用查询重写功能,给原来的语句加上 force index,也可以解决这个问题。
上面我和你讨论的由慢查询导致性能问题的三种可能情况,实际上出现最多的是前两种,即:索引没设计好和语句没写好。而这两种情况,恰恰是完全可以避免的。比如,通过下面这个过程,我们就可以预先发现问题。

  1. 上线前,在测试环境,把慢查询日志(slow log)打开,并且把 long_query_time 设置成 0,确保每个语句都会被记录入慢查询日志;
  2. 在测试表里插入模拟线上的数据,做一遍回归测试;
  3. 观察慢查询日志里每类语句的输出,特别留意 Rows_examined 字段是否与预期一致

不要吝啬这段花在上线前的“额外”时间,因为这会帮你省下很多故障复盘的时间。
如果新增的 SQL 语句不多,手动跑一下就可以。而如果是新项目的话,或者是修改了原有项目的 表结构设计,全量回归测试都是必要的。这时候,你需要工具帮你检查所有的 SQL 语句的返回结果。比如,你可以使用开源工具 pt-query-digest(https://www.percona.com/doc/percona-toolkit/3.0/pt-query-digest.html)。

QPS 突增问题

有时候由于业务突然出现高峰,或者应用程序 bug,导致某个语句的 QPS 突然暴涨,也可能导致 MySQL 压力过大,影响服务。
我之前碰到过一类情况,是由一个新功能的 bug 导致的。当然,最理想的情况是让业务把这个功能下掉,服务自然就会恢复。
而下掉一个功能,如果从数据库端处理的话,对应于不同的背景,有不同的方法可用。我这里再和你展开说明一下。

  1. 一种是由全新业务的 bug 导致的。假设你的 DB 运维是比较规范的,也就是说白名单是一个个加的。这种情况下,如果你能够确定业务方会下掉这个功能,只是时间上没那么快,那么就可以从数据库端直接把白名单去掉

    MySQL 运维体系中的白名单机制一般用于限制数据库的访问,只允许特定的 IP 地址或者主机名访问数据库,以增加数据库的安全性。

  2. 如果这个新功能使用的是单独的数据库用户,可以用管理员账号把这个用户删掉,然后断开现有连接。这样,这个新功能的连接不成功,由它引发的 QPS 就会变成 0。
  3. 如果这个新增的功能跟主体功能是部署在一起的,那么我们只能通过处理语句来限制。这时,我们可以使用上面提到的查询重写功能,把压力最大的 SQL 语句直接重写成”select 1” 返回。

当然,这个操作的风险很高,需要你特别细致。它可能存在两个副作用:

  1. 如果别的功能里面也用到了这个 SQL 语句模板,会有误伤;
  2. 很多业务并不是靠这一个语句就能完成逻辑的,所以如果单独把这一个语句以 select 1 的结果返回的话,可能会导致后面的业务逻辑一起失败。

所以,方案 3 是用于止血的,跟前面提到的去掉权限验证一样,应该是你所有选项里优先级最低的一个方案。
同时你会发现,其实方案 1 和 2 都要依赖于规范的运维体系:虚拟化、白名单机制、业务账号分离。由此可见,更多的准备,往往意味着更稳定的系统。

问题

你是否碰到过,在业务高峰期需要临时救火的场景?你又是怎么处理的呢?
@Long 同学,在留言中提到了几个很好的场景。

  • 其中第 3 个问题,“如果一个数据库是被客户端的压力打满导致无法响应的,重启数据库是没用的。”,说明他很好地思考了。 这个问题是因为重启之后,业务请求还会再发。而且由于是重启,buffer pool 被清空,可能会导致语句执行得更慢
  • 他提到的第 4 个问题也很典型。有时候一个表上会出现多个单字段索引(而且往往这是因为运维工程师对索引原理不够清晰做的设计),这样就可能出现优化器选择索引合并算法的现象。但实际上,索引合并算法的效率并不好。而通过将其中的一个索引改成联合索引的方法,是一个很好的应对方案。

还有其他几个同学提到的问题场景,也很好,很值得你一看。

@Max 同学提到一个很好的例子:客户端程序的连接器,连接完成后会做一些诸如 show columns 的操作,在短连接模式下这个影响就非常大了。
这个提醒我们,在 review 项目的时候,不止要 review 我们自己业务的代码,也要 review 连接器的行为。一般做法就是在测试环境,把 general_log 打开,用业务行为触发连接,然后通过 general log 分析连接器的行为。

@Manjusaka 同学的留言中,第二点提得非常好:如果你的数据库请求模式直接对应于客户请求,这往往是一个危险的设计。因为客户行为不可控,可能突然因为你们公司的一个运营推广,压力暴增,这样很容易把数据库打挂。
设计模型里面设计一层,专门负责管理请求和数据库服务资源,对于比较重要和大流量的业务,是一个好的设计方向。

@Vincent 同学提了一个好问题,用文中提到的 DDL 方案,会导致 binlog 里面少了这个 DDL 语句,后续影响备份恢复的功能。由于需要另一个知识点(主备同步协议),我放在后面的文章中说明。

[!tip]
关于kill threadId 跟 kill query threadId的小例子

客户端(mysqlworkbench)送给server端的是KILL QUERY thread_id,而不是Kill thread_id,
所以MySQL只是终止了事务中的statement执行,但是并不会释放锁,因为目前的琐的获取和释放都是基于事务结束的(提交或者回滚)。
这里面关于kill query/ thread_id的区别解释
https://dev.mysql.com/doc/refman/5.6/en/kill.html
解决方法:
自己解决:kill 对应的thread_id,或者关闭执行窗口(这个时候会送个quit给server端)。
别人解决:有super权限的人kill thread_id。